Properties

Label 2-10-1.1-c17-0-0
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $18.3222$
Root an. cond. $4.28044$
Motivic weight $17$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 256·2-s − 9.31e3·3-s + 6.55e4·4-s + 3.90e5·5-s + 2.38e6·6-s − 2.48e7·7-s − 1.67e7·8-s − 4.24e7·9-s − 1.00e8·10-s − 1.90e8·11-s − 6.10e8·12-s − 1.57e7·13-s + 6.36e9·14-s − 3.63e9·15-s + 4.29e9·16-s − 2.25e10·17-s + 1.08e10·18-s + 1.27e11·19-s + 2.56e10·20-s + 2.31e11·21-s + 4.87e10·22-s + 2.59e11·23-s + 1.56e11·24-s + 1.52e11·25-s + 4.02e9·26-s + 1.59e12·27-s − 1.62e12·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.819·3-s + 0.5·4-s + 0.447·5-s + 0.579·6-s − 1.63·7-s − 0.353·8-s − 0.328·9-s − 0.316·10-s − 0.267·11-s − 0.409·12-s − 0.00535·13-s + 1.15·14-s − 0.366·15-s + 0.250·16-s − 0.784·17-s + 0.232·18-s + 1.72·19-s + 0.223·20-s + 1.33·21-s + 0.189·22-s + 0.690·23-s + 0.289·24-s + 0.200·25-s + 0.00378·26-s + 1.08·27-s − 0.815·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(18-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+17/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(18.3222\)
Root analytic conductor: \(4.28044\)
Motivic weight: \(17\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :17/2),\ 1)\)

Particular Values

\(L(9)\) \(\approx\) \(0.6384991665\)
\(L(\frac12)\) \(\approx\) \(0.6384991665\)
\(L(\frac{19}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 256T \)
5 \( 1 - 3.90e5T \)
good3 \( 1 + 9.31e3T + 1.29e8T^{2} \)
7 \( 1 + 2.48e7T + 2.32e14T^{2} \)
11 \( 1 + 1.90e8T + 5.05e17T^{2} \)
13 \( 1 + 1.57e7T + 8.65e18T^{2} \)
17 \( 1 + 2.25e10T + 8.27e20T^{2} \)
19 \( 1 - 1.27e11T + 5.48e21T^{2} \)
23 \( 1 - 2.59e11T + 1.41e23T^{2} \)
29 \( 1 + 2.57e12T + 7.25e24T^{2} \)
31 \( 1 - 7.91e12T + 2.25e25T^{2} \)
37 \( 1 + 2.09e13T + 4.56e26T^{2} \)
41 \( 1 - 1.98e13T + 2.61e27T^{2} \)
43 \( 1 + 4.60e13T + 5.87e27T^{2} \)
47 \( 1 - 2.66e14T + 2.66e28T^{2} \)
53 \( 1 - 4.00e14T + 2.05e29T^{2} \)
59 \( 1 - 1.82e15T + 1.27e30T^{2} \)
61 \( 1 + 1.48e15T + 2.24e30T^{2} \)
67 \( 1 + 2.71e15T + 1.10e31T^{2} \)
71 \( 1 + 3.87e15T + 2.96e31T^{2} \)
73 \( 1 + 2.85e15T + 4.74e31T^{2} \)
79 \( 1 - 2.80e15T + 1.81e32T^{2} \)
83 \( 1 + 7.04e15T + 4.21e32T^{2} \)
89 \( 1 - 5.51e16T + 1.37e33T^{2} \)
97 \( 1 - 6.42e16T + 5.95e33T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.71190426901195853340748588141, −15.70921941218575105644057520023, −13.43605969509634101210197496410, −11.90456567292496176224001549305, −10.37125833178106857491133091068, −9.156191399489473612719585899751, −6.89507437872306717036684652840, −5.66588688571795440059821513094, −2.91054587554933684561382951429, −0.62687264407191403541721810399, 0.62687264407191403541721810399, 2.91054587554933684561382951429, 5.66588688571795440059821513094, 6.89507437872306717036684652840, 9.156191399489473612719585899751, 10.37125833178106857491133091068, 11.90456567292496176224001549305, 13.43605969509634101210197496410, 15.70921941218575105644057520023, 16.71190426901195853340748588141

Graph of the $Z$-function along the critical line