Properties

Label 2-10-1.1-c13-0-1
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $10.7230$
Root an. cond. $3.27461$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 64·2-s + 1.22e3·3-s + 4.09e3·4-s + 1.56e4·5-s − 7.83e4·6-s − 6.52e4·7-s − 2.62e5·8-s − 9.61e4·9-s − 1.00e6·10-s + 7.42e6·11-s + 5.01e6·12-s + 3.22e7·13-s + 4.17e6·14-s + 1.91e7·15-s + 1.67e7·16-s − 2.00e7·17-s + 6.15e6·18-s + 7.70e7·19-s + 6.40e7·20-s − 7.98e7·21-s − 4.75e8·22-s + 6.64e8·23-s − 3.20e8·24-s + 2.44e8·25-s − 2.06e9·26-s − 2.06e9·27-s − 2.67e8·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.969·3-s + 1/2·4-s + 0.447·5-s − 0.685·6-s − 0.209·7-s − 0.353·8-s − 0.0603·9-s − 0.316·10-s + 1.26·11-s + 0.484·12-s + 1.85·13-s + 0.148·14-s + 0.433·15-s + 1/4·16-s − 0.201·17-s + 0.0426·18-s + 0.375·19-s + 0.223·20-s − 0.203·21-s − 0.893·22-s + 0.935·23-s − 0.342·24-s + 1/5·25-s − 1.31·26-s − 1.02·27-s − 0.104·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(10.7230\)
Root analytic conductor: \(3.27461\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(1.968270391\)
\(L(\frac12)\) \(\approx\) \(1.968270391\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{6} T \)
5 \( 1 - p^{6} T \)
good3 \( 1 - 136 p^{2} T + p^{13} T^{2} \)
7 \( 1 + 9316 p T + p^{13} T^{2} \)
11 \( 1 - 7427652 T + p^{13} T^{2} \)
13 \( 1 - 32243054 T + p^{13} T^{2} \)
17 \( 1 + 20088222 T + p^{13} T^{2} \)
19 \( 1 - 77070740 T + p^{13} T^{2} \)
23 \( 1 - 664071804 T + p^{13} T^{2} \)
29 \( 1 - 1558250670 T + p^{13} T^{2} \)
31 \( 1 + 303290968 T + p^{13} T^{2} \)
37 \( 1 + 775029322 T + p^{13} T^{2} \)
41 \( 1 - 43696205082 T + p^{13} T^{2} \)
43 \( 1 + 68680553536 T + p^{13} T^{2} \)
47 \( 1 + 138979393812 T + p^{13} T^{2} \)
53 \( 1 + 103656826986 T + p^{13} T^{2} \)
59 \( 1 - 394887188940 T + p^{13} T^{2} \)
61 \( 1 + 488570895538 T + p^{13} T^{2} \)
67 \( 1 - 368381730848 T + p^{13} T^{2} \)
71 \( 1 - 325473704592 T + p^{13} T^{2} \)
73 \( 1 + 2262556998406 T + p^{13} T^{2} \)
79 \( 1 - 2032917332000 T + p^{13} T^{2} \)
83 \( 1 + 854518199496 T + p^{13} T^{2} \)
89 \( 1 - 8906829484890 T + p^{13} T^{2} \)
97 \( 1 + 9873550533742 T + p^{13} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.72599994620068940891037464557, −16.26912573741230595391175146798, −14.69149720199710449028643896768, −13.41146741940031858626341219347, −11.27681103912710926282584651644, −9.409019812515722734204273411400, −8.446453898784722073523927146943, −6.41348796693541393420607706456, −3.32764419861210783395018957960, −1.40653750997997567616527119429, 1.40653750997997567616527119429, 3.32764419861210783395018957960, 6.41348796693541393420607706456, 8.446453898784722073523927146943, 9.409019812515722734204273411400, 11.27681103912710926282584651644, 13.41146741940031858626341219347, 14.69149720199710449028643896768, 16.26912573741230595391175146798, 17.72599994620068940891037464557

Graph of the $Z$-function along the critical line