Properties

Label 2-10-1.1-c11-0-2
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $7.68343$
Root an. cond. $2.77190$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s + 745.·3-s + 1.02e3·4-s + 3.12e3·5-s + 2.38e4·6-s − 7.14e4·7-s + 3.27e4·8-s + 3.78e5·9-s + 1.00e5·10-s − 3.45e5·11-s + 7.63e5·12-s + 1.50e6·13-s − 2.28e6·14-s + 2.33e6·15-s + 1.04e6·16-s − 5.39e6·17-s + 1.21e7·18-s − 1.11e7·19-s + 3.20e6·20-s − 5.33e7·21-s − 1.10e7·22-s − 5.27e6·23-s + 2.44e7·24-s + 9.76e6·25-s + 4.83e7·26-s + 1.50e8·27-s − 7.32e7·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.77·3-s + 0.5·4-s + 0.447·5-s + 1.25·6-s − 1.60·7-s + 0.353·8-s + 2.13·9-s + 0.316·10-s − 0.647·11-s + 0.885·12-s + 1.12·13-s − 1.13·14-s + 0.792·15-s + 0.250·16-s − 0.921·17-s + 1.51·18-s − 1.03·19-s + 0.223·20-s − 2.84·21-s − 0.457·22-s − 0.170·23-s + 0.626·24-s + 0.199·25-s + 0.797·26-s + 2.01·27-s − 0.803·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(7.68343\)
Root analytic conductor: \(2.77190\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(3.823244673\)
\(L(\frac12)\) \(\approx\) \(3.823244673\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 32T \)
5 \( 1 - 3.12e3T \)
good3 \( 1 - 745.T + 1.77e5T^{2} \)
7 \( 1 + 7.14e4T + 1.97e9T^{2} \)
11 \( 1 + 3.45e5T + 2.85e11T^{2} \)
13 \( 1 - 1.50e6T + 1.79e12T^{2} \)
17 \( 1 + 5.39e6T + 3.42e13T^{2} \)
19 \( 1 + 1.11e7T + 1.16e14T^{2} \)
23 \( 1 + 5.27e6T + 9.52e14T^{2} \)
29 \( 1 + 1.86e7T + 1.22e16T^{2} \)
31 \( 1 - 7.10e7T + 2.54e16T^{2} \)
37 \( 1 - 3.23e8T + 1.77e17T^{2} \)
41 \( 1 + 9.11e8T + 5.50e17T^{2} \)
43 \( 1 + 1.16e9T + 9.29e17T^{2} \)
47 \( 1 - 2.81e8T + 2.47e18T^{2} \)
53 \( 1 - 4.05e9T + 9.26e18T^{2} \)
59 \( 1 - 4.89e9T + 3.01e19T^{2} \)
61 \( 1 - 1.07e10T + 4.35e19T^{2} \)
67 \( 1 - 3.70e9T + 1.22e20T^{2} \)
71 \( 1 - 3.45e9T + 2.31e20T^{2} \)
73 \( 1 + 2.21e10T + 3.13e20T^{2} \)
79 \( 1 - 7.02e9T + 7.47e20T^{2} \)
83 \( 1 - 5.55e10T + 1.28e21T^{2} \)
89 \( 1 + 9.29e9T + 2.77e21T^{2} \)
97 \( 1 - 4.71e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.69748957891774686927420549159, −16.08971783516549348062018525335, −15.08580677503117582957814296325, −13.43059715146488194197007047003, −13.11436772873243776789052969339, −10.11655535441403759245036547554, −8.638804591976078545783897909957, −6.60100364447373069342408599248, −3.70379288908772639419701663880, −2.40946196629544146143956038996, 2.40946196629544146143956038996, 3.70379288908772639419701663880, 6.60100364447373069342408599248, 8.638804591976078545783897909957, 10.11655535441403759245036547554, 13.11436772873243776789052969339, 13.43059715146488194197007047003, 15.08580677503117582957814296325, 16.08971783516549348062018525335, 18.69748957891774686927420549159

Graph of the $Z$-function along the critical line