Properties

Label 18-87e18-1.1-c1e9-0-2
Degree $18$
Conductor $8.154\times 10^{34}$
Sign $1$
Analytic cond. $1.07606\times 10^{16}$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·4-s + 5·7-s + 3·11-s + 5·13-s + 5·14-s + 16-s + 16·17-s + 19-s + 3·22-s + 10·23-s − 18·25-s + 5·26-s − 15·28-s + 4·31-s − 11·32-s + 16·34-s − 25·37-s + 38-s + 34·41-s − 12·43-s − 9·44-s + 10·46-s + 8·47-s − 6·49-s − 18·50-s − 15·52-s + ⋯
L(s)  = 1  + 0.707·2-s − 3/2·4-s + 1.88·7-s + 0.904·11-s + 1.38·13-s + 1.33·14-s + 1/4·16-s + 3.88·17-s + 0.229·19-s + 0.639·22-s + 2.08·23-s − 3.59·25-s + 0.980·26-s − 2.83·28-s + 0.718·31-s − 1.94·32-s + 2.74·34-s − 4.10·37-s + 0.162·38-s + 5.30·41-s − 1.82·43-s − 1.35·44-s + 1.47·46-s + 1.16·47-s − 6/7·49-s − 2.54·50-s − 2.08·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{18} \cdot 29^{18}\right)^{s/2} \, \Gamma_{\C}(s)^{9} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{18} \cdot 29^{18}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{9} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(18\)
Conductor: \(3^{18} \cdot 29^{18}\)
Sign: $1$
Analytic conductor: \(1.07606\times 10^{16}\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((18,\ 3^{18} \cdot 29^{18} ,\ ( \ : [1/2]^{9} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(12.47924883\)
\(L(\frac12)\) \(\approx\) \(12.47924883\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 - T + p^{2} T^{2} - 7 T^{3} + 9 p T^{4} - 27 T^{5} + 55 T^{6} - 39 p T^{7} + 67 p T^{8} - 183 T^{9} + 67 p^{2} T^{10} - 39 p^{3} T^{11} + 55 p^{3} T^{12} - 27 p^{4} T^{13} + 9 p^{6} T^{14} - 7 p^{6} T^{15} + p^{9} T^{16} - p^{8} T^{17} + p^{9} T^{18} \)
5 \( 1 + 18 T^{2} - 24 T^{3} + 177 T^{4} - 337 T^{5} + 1492 T^{6} - 2633 T^{7} + 9457 T^{8} - 15649 T^{9} + 9457 p T^{10} - 2633 p^{2} T^{11} + 1492 p^{3} T^{12} - 337 p^{4} T^{13} + 177 p^{5} T^{14} - 24 p^{6} T^{15} + 18 p^{7} T^{16} + p^{9} T^{18} \)
7 \( 1 - 5 T + 31 T^{2} - 128 T^{3} + 463 T^{4} - 1405 T^{5} + 4100 T^{6} - 9956 T^{7} + 25827 T^{8} - 65596 T^{9} + 25827 p T^{10} - 9956 p^{2} T^{11} + 4100 p^{3} T^{12} - 1405 p^{4} T^{13} + 463 p^{5} T^{14} - 128 p^{6} T^{15} + 31 p^{7} T^{16} - 5 p^{8} T^{17} + p^{9} T^{18} \)
11 \( 1 - 3 T + 49 T^{2} - 52 T^{3} + 991 T^{4} + 513 T^{5} + 13154 T^{6} + 27866 T^{7} + 1147 p^{2} T^{8} + 445824 T^{9} + 1147 p^{3} T^{10} + 27866 p^{2} T^{11} + 13154 p^{3} T^{12} + 513 p^{4} T^{13} + 991 p^{5} T^{14} - 52 p^{6} T^{15} + 49 p^{7} T^{16} - 3 p^{8} T^{17} + p^{9} T^{18} \)
13 \( 1 - 5 T + 102 T^{2} - 33 p T^{3} + 4788 T^{4} - 17120 T^{5} + 135677 T^{6} - 412188 T^{7} + 2557299 T^{8} - 6530585 T^{9} + 2557299 p T^{10} - 412188 p^{2} T^{11} + 135677 p^{3} T^{12} - 17120 p^{4} T^{13} + 4788 p^{5} T^{14} - 33 p^{7} T^{15} + 102 p^{7} T^{16} - 5 p^{8} T^{17} + p^{9} T^{18} \)
17 \( 1 - 16 T + 190 T^{2} - 1544 T^{3} + 11104 T^{4} - 66663 T^{5} + 376150 T^{6} - 1868520 T^{7} + 8820919 T^{8} - 37225411 T^{9} + 8820919 p T^{10} - 1868520 p^{2} T^{11} + 376150 p^{3} T^{12} - 66663 p^{4} T^{13} + 11104 p^{5} T^{14} - 1544 p^{6} T^{15} + 190 p^{7} T^{16} - 16 p^{8} T^{17} + p^{9} T^{18} \)
19 \( 1 - T + 144 T^{2} - 154 T^{3} + 9521 T^{4} - 10329 T^{5} + 382344 T^{6} - 394400 T^{7} + 10349226 T^{8} - 9381584 T^{9} + 10349226 p T^{10} - 394400 p^{2} T^{11} + 382344 p^{3} T^{12} - 10329 p^{4} T^{13} + 9521 p^{5} T^{14} - 154 p^{6} T^{15} + 144 p^{7} T^{16} - p^{8} T^{17} + p^{9} T^{18} \)
23 \( 1 - 10 T + 8 p T^{2} - 1416 T^{3} + 15023 T^{4} - 94178 T^{5} + 734858 T^{6} - 3853590 T^{7} + 24114842 T^{8} - 106498388 T^{9} + 24114842 p T^{10} - 3853590 p^{2} T^{11} + 734858 p^{3} T^{12} - 94178 p^{4} T^{13} + 15023 p^{5} T^{14} - 1416 p^{6} T^{15} + 8 p^{8} T^{16} - 10 p^{8} T^{17} + p^{9} T^{18} \)
31 \( 1 - 4 T + 95 T^{2} - 604 T^{3} + 4724 T^{4} - 31293 T^{5} + 171357 T^{6} - 961972 T^{7} + 4798255 T^{8} - 27630886 T^{9} + 4798255 p T^{10} - 961972 p^{2} T^{11} + 171357 p^{3} T^{12} - 31293 p^{4} T^{13} + 4724 p^{5} T^{14} - 604 p^{6} T^{15} + 95 p^{7} T^{16} - 4 p^{8} T^{17} + p^{9} T^{18} \)
37 \( 1 + 25 T + 476 T^{2} + 6436 T^{3} + 74730 T^{4} + 726039 T^{5} + 6338716 T^{6} + 48776974 T^{7} + 344118462 T^{8} + 2179787403 T^{9} + 344118462 p T^{10} + 48776974 p^{2} T^{11} + 6338716 p^{3} T^{12} + 726039 p^{4} T^{13} + 74730 p^{5} T^{14} + 6436 p^{6} T^{15} + 476 p^{7} T^{16} + 25 p^{8} T^{17} + p^{9} T^{18} \)
41 \( 1 - 34 T + 788 T^{2} - 12970 T^{3} + 175640 T^{4} - 1971845 T^{5} + 19301782 T^{6} - 164588816 T^{7} + 1253221727 T^{8} - 8463182695 T^{9} + 1253221727 p T^{10} - 164588816 p^{2} T^{11} + 19301782 p^{3} T^{12} - 1971845 p^{4} T^{13} + 175640 p^{5} T^{14} - 12970 p^{6} T^{15} + 788 p^{7} T^{16} - 34 p^{8} T^{17} + p^{9} T^{18} \)
43 \( 1 + 12 T + 217 T^{2} + 2702 T^{3} + 28804 T^{4} + 281927 T^{5} + 2520869 T^{6} + 19935336 T^{7} + 147994305 T^{8} + 1019469718 T^{9} + 147994305 p T^{10} + 19935336 p^{2} T^{11} + 2520869 p^{3} T^{12} + 281927 p^{4} T^{13} + 28804 p^{5} T^{14} + 2702 p^{6} T^{15} + 217 p^{7} T^{16} + 12 p^{8} T^{17} + p^{9} T^{18} \)
47 \( 1 - 8 T + 268 T^{2} - 2089 T^{3} + 38781 T^{4} - 267015 T^{5} + 3604314 T^{6} - 21845867 T^{7} + 235040160 T^{8} - 1222532802 T^{9} + 235040160 p T^{10} - 21845867 p^{2} T^{11} + 3604314 p^{3} T^{12} - 267015 p^{4} T^{13} + 38781 p^{5} T^{14} - 2089 p^{6} T^{15} + 268 p^{7} T^{16} - 8 p^{8} T^{17} + p^{9} T^{18} \)
53 \( 1 - 32 T + 777 T^{2} - 13556 T^{3} + 199931 T^{4} - 2475132 T^{5} + 27002767 T^{6} - 258706391 T^{7} + 2223873503 T^{8} - 17047663403 T^{9} + 2223873503 p T^{10} - 258706391 p^{2} T^{11} + 27002767 p^{3} T^{12} - 2475132 p^{4} T^{13} + 199931 p^{5} T^{14} - 13556 p^{6} T^{15} + 777 p^{7} T^{16} - 32 p^{8} T^{17} + p^{9} T^{18} \)
59 \( 1 + 10 T + 263 T^{2} + 28 p T^{3} + 30369 T^{4} + 110304 T^{5} + 2000488 T^{6} + 1128580 T^{7} + 96017121 T^{8} - 142377228 T^{9} + 96017121 p T^{10} + 1128580 p^{2} T^{11} + 2000488 p^{3} T^{12} + 110304 p^{4} T^{13} + 30369 p^{5} T^{14} + 28 p^{7} T^{15} + 263 p^{7} T^{16} + 10 p^{8} T^{17} + p^{9} T^{18} \)
61 \( 1 + 51 T + 1613 T^{2} + 36289 T^{3} + 10652 p T^{4} + 9576025 T^{5} + 1971498 p T^{6} + 1302879380 T^{7} + 12352053601 T^{8} + 102748700237 T^{9} + 12352053601 p T^{10} + 1302879380 p^{2} T^{11} + 1971498 p^{4} T^{12} + 9576025 p^{4} T^{13} + 10652 p^{6} T^{14} + 36289 p^{6} T^{15} + 1613 p^{7} T^{16} + 51 p^{8} T^{17} + p^{9} T^{18} \)
67 \( 1 - 7 T + 271 T^{2} - 2196 T^{3} + 43720 T^{4} - 328746 T^{5} + 4849035 T^{6} - 33932684 T^{7} + 408787801 T^{8} - 2583256998 T^{9} + 408787801 p T^{10} - 33932684 p^{2} T^{11} + 4849035 p^{3} T^{12} - 328746 p^{4} T^{13} + 43720 p^{5} T^{14} - 2196 p^{6} T^{15} + 271 p^{7} T^{16} - 7 p^{8} T^{17} + p^{9} T^{18} \)
71 \( 1 + 7 T + 403 T^{2} + 2578 T^{3} + 79996 T^{4} + 463984 T^{5} + 10354421 T^{6} + 54242872 T^{7} + 972589151 T^{8} + 4513565462 T^{9} + 972589151 p T^{10} + 54242872 p^{2} T^{11} + 10354421 p^{3} T^{12} + 463984 p^{4} T^{13} + 79996 p^{5} T^{14} + 2578 p^{6} T^{15} + 403 p^{7} T^{16} + 7 p^{8} T^{17} + p^{9} T^{18} \)
73 \( 1 + 17 T + 401 T^{2} + 6426 T^{3} + 92991 T^{4} + 1179384 T^{5} + 13953041 T^{6} + 144174105 T^{7} + 1416502918 T^{8} + 12512366475 T^{9} + 1416502918 p T^{10} + 144174105 p^{2} T^{11} + 13953041 p^{3} T^{12} + 1179384 p^{4} T^{13} + 92991 p^{5} T^{14} + 6426 p^{6} T^{15} + 401 p^{7} T^{16} + 17 p^{8} T^{17} + p^{9} T^{18} \)
79 \( 1 + 13 T + 543 T^{2} + 6692 T^{3} + 144736 T^{4} + 1578690 T^{5} + 24184789 T^{6} + 226132206 T^{7} + 2738544831 T^{8} + 21609843142 T^{9} + 2738544831 p T^{10} + 226132206 p^{2} T^{11} + 24184789 p^{3} T^{12} + 1578690 p^{4} T^{13} + 144736 p^{5} T^{14} + 6692 p^{6} T^{15} + 543 p^{7} T^{16} + 13 p^{8} T^{17} + p^{9} T^{18} \)
83 \( 1 - 31 T + 1023 T^{2} - 20178 T^{3} + 391292 T^{4} - 5722828 T^{5} + 81071705 T^{6} - 933533148 T^{7} + 10375704955 T^{8} - 96245293542 T^{9} + 10375704955 p T^{10} - 933533148 p^{2} T^{11} + 81071705 p^{3} T^{12} - 5722828 p^{4} T^{13} + 391292 p^{5} T^{14} - 20178 p^{6} T^{15} + 1023 p^{7} T^{16} - 31 p^{8} T^{17} + p^{9} T^{18} \)
89 \( 1 + 32 T + 894 T^{2} + 16539 T^{3} + 282952 T^{4} + 3946842 T^{5} + 51974585 T^{6} + 593765484 T^{7} + 6445461922 T^{8} + 62230806243 T^{9} + 6445461922 p T^{10} + 593765484 p^{2} T^{11} + 51974585 p^{3} T^{12} + 3946842 p^{4} T^{13} + 282952 p^{5} T^{14} + 16539 p^{6} T^{15} + 894 p^{7} T^{16} + 32 p^{8} T^{17} + p^{9} T^{18} \)
97 \( 1 + 16 T + 446 T^{2} + 5487 T^{3} + 94470 T^{4} + 931906 T^{5} + 13217605 T^{6} + 110931128 T^{7} + 1428628652 T^{8} + 11184892691 T^{9} + 1428628652 p T^{10} + 110931128 p^{2} T^{11} + 13217605 p^{3} T^{12} + 931906 p^{4} T^{13} + 94470 p^{5} T^{14} + 5487 p^{6} T^{15} + 446 p^{7} T^{16} + 16 p^{8} T^{17} + p^{9} T^{18} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{18} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.02047267711475453741449472269, −2.90008785202746917115675871494, −2.78351080087716411166380670030, −2.64213111293986131423232629892, −2.44897044198483009649805511595, −2.35446360535370328444529632957, −2.34190888543849055420685026819, −2.21897371772611866937310066631, −2.01210791770773190519884009721, −1.96275629018755535527072714410, −1.76814497460022526539607501279, −1.64832760032658913135244748281, −1.61031981205040572566284397709, −1.56890303528569594701398545878, −1.45888059965780656837024871940, −1.42622511628106722097658652227, −1.41193971786384212160903104032, −1.01543328522474359073883645238, −0.980968781431946935340439646433, −0.868341767749954934486033379859, −0.808977519612790443892484021914, −0.69538489021728697424033390715, −0.44373090913206291325624697759, −0.27964237340053247737940310787, −0.12777255248235665295740170175, 0.12777255248235665295740170175, 0.27964237340053247737940310787, 0.44373090913206291325624697759, 0.69538489021728697424033390715, 0.808977519612790443892484021914, 0.868341767749954934486033379859, 0.980968781431946935340439646433, 1.01543328522474359073883645238, 1.41193971786384212160903104032, 1.42622511628106722097658652227, 1.45888059965780656837024871940, 1.56890303528569594701398545878, 1.61031981205040572566284397709, 1.64832760032658913135244748281, 1.76814497460022526539607501279, 1.96275629018755535527072714410, 2.01210791770773190519884009721, 2.21897371772611866937310066631, 2.34190888543849055420685026819, 2.35446360535370328444529632957, 2.44897044198483009649805511595, 2.64213111293986131423232629892, 2.78351080087716411166380670030, 2.90008785202746917115675871494, 3.02047267711475453741449472269

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.