Properties

Label 18-325e9-1.1-c5e9-0-1
Degree $18$
Conductor $4.045\times 10^{22}$
Sign $-1$
Analytic cond. $2.84050\times 10^{15}$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $9$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·2-s − 11·3-s − 86·4-s + 55·6-s + 12·7-s + 312·8-s − 752·9-s − 1.42e3·11-s + 946·12-s + 1.52e3·13-s − 60·14-s + 3.45e3·16-s + 648·17-s + 3.76e3·18-s − 408·19-s − 132·21-s + 7.11e3·22-s + 1.83e3·23-s − 3.43e3·24-s − 7.60e3·26-s + 7.05e3·27-s − 1.03e3·28-s − 8.73e3·29-s + 748·31-s + 473·32-s + 1.56e4·33-s − 3.24e3·34-s + ⋯
L(s)  = 1  − 0.883·2-s − 0.705·3-s − 2.68·4-s + 0.623·6-s + 0.0925·7-s + 1.72·8-s − 3.09·9-s − 3.54·11-s + 1.89·12-s + 2.49·13-s − 0.0818·14-s + 3.37·16-s + 0.543·17-s + 2.73·18-s − 0.259·19-s − 0.0653·21-s + 3.13·22-s + 0.724·23-s − 1.21·24-s − 2.20·26-s + 1.86·27-s − 0.248·28-s − 1.92·29-s + 0.139·31-s + 0.0816·32-s + 2.50·33-s − 0.480·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{18} \cdot 13^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{9} \, L(s)\cr=\mathstrut & -\,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{18} \cdot 13^{9}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{9} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(18\)
Conductor: \(5^{18} \cdot 13^{9}\)
Sign: $-1$
Analytic conductor: \(2.84050\times 10^{15}\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(9\)
Selberg data: \((18,\ 5^{18} \cdot 13^{9} ,\ ( \ : [5/2]^{9} ),\ -1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( ( 1 - p^{2} T )^{9} \)
good2 \( 1 + 5 T + 111 T^{2} + 673 T^{3} + 1975 p^{2} T^{4} + 22509 p T^{5} + 104647 p^{2} T^{6} + 271961 p^{3} T^{7} + 1046245 p^{4} T^{8} + 633137 p^{7} T^{9} + 1046245 p^{9} T^{10} + 271961 p^{13} T^{11} + 104647 p^{17} T^{12} + 22509 p^{21} T^{13} + 1975 p^{27} T^{14} + 673 p^{30} T^{15} + 111 p^{35} T^{16} + 5 p^{40} T^{17} + p^{45} T^{18} \)
3 \( 1 + 11 T + 97 p^{2} T^{2} + 1202 p^{2} T^{3} + 149905 p T^{4} + 2119657 p T^{5} + 162917153 T^{6} + 2502982570 T^{7} + 15828224858 p T^{8} + 79712893852 p^{2} T^{9} + 15828224858 p^{6} T^{10} + 2502982570 p^{10} T^{11} + 162917153 p^{15} T^{12} + 2119657 p^{21} T^{13} + 149905 p^{26} T^{14} + 1202 p^{32} T^{15} + 97 p^{37} T^{16} + 11 p^{40} T^{17} + p^{45} T^{18} \)
7 \( 1 - 12 T + 96157 T^{2} - 562396 T^{3} + 4524975747 T^{4} + 9279133840 T^{5} + 138615511394837 T^{6} + 1012284041916540 T^{7} + 3074128450205785774 T^{8} + 25354172273837803832 T^{9} + 3074128450205785774 p^{5} T^{10} + 1012284041916540 p^{10} T^{11} + 138615511394837 p^{15} T^{12} + 9279133840 p^{20} T^{13} + 4524975747 p^{25} T^{14} - 562396 p^{30} T^{15} + 96157 p^{35} T^{16} - 12 p^{40} T^{17} + p^{45} T^{18} \)
11 \( 1 + 1422 T + 1678928 T^{2} + 1457218782 T^{3} + 1113094396148 T^{4} + 714749702584070 T^{5} + 415158952053473389 T^{6} + \)\(21\!\cdots\!24\)\( T^{7} + \)\(90\!\cdots\!88\)\( p T^{8} + \)\(34\!\cdots\!96\)\( p^{2} T^{9} + \)\(90\!\cdots\!88\)\( p^{6} T^{10} + \)\(21\!\cdots\!24\)\( p^{10} T^{11} + 415158952053473389 p^{15} T^{12} + 714749702584070 p^{20} T^{13} + 1113094396148 p^{25} T^{14} + 1457218782 p^{30} T^{15} + 1678928 p^{35} T^{16} + 1422 p^{40} T^{17} + p^{45} T^{18} \)
17 \( 1 - 648 T + 3847624 T^{2} - 3743716930 T^{3} + 7955206965208 T^{4} - 9997321106254216 T^{5} + 16234048035213331295 T^{6} - \)\(17\!\cdots\!84\)\( T^{7} + \)\(31\!\cdots\!88\)\( T^{8} - \)\(26\!\cdots\!20\)\( T^{9} + \)\(31\!\cdots\!88\)\( p^{5} T^{10} - \)\(17\!\cdots\!84\)\( p^{10} T^{11} + 16234048035213331295 p^{15} T^{12} - 9997321106254216 p^{20} T^{13} + 7955206965208 p^{25} T^{14} - 3743716930 p^{30} T^{15} + 3847624 p^{35} T^{16} - 648 p^{40} T^{17} + p^{45} T^{18} \)
19 \( 1 + 408 T + 13870454 T^{2} + 362063268 p T^{3} + 96344427116891 T^{4} + 49973344519545016 T^{5} + \)\(44\!\cdots\!51\)\( T^{6} + \)\(21\!\cdots\!32\)\( T^{7} + \)\(14\!\cdots\!93\)\( T^{8} + \)\(33\!\cdots\!80\)\( p T^{9} + \)\(14\!\cdots\!93\)\( p^{5} T^{10} + \)\(21\!\cdots\!32\)\( p^{10} T^{11} + \)\(44\!\cdots\!51\)\( p^{15} T^{12} + 49973344519545016 p^{20} T^{13} + 96344427116891 p^{25} T^{14} + 362063268 p^{31} T^{15} + 13870454 p^{35} T^{16} + 408 p^{40} T^{17} + p^{45} T^{18} \)
23 \( 1 - 1839 T + 27570110 T^{2} - 54947371329 T^{3} + 393408475518083 T^{4} - 689356483695756566 T^{5} + \)\(38\!\cdots\!67\)\( T^{6} - \)\(56\!\cdots\!07\)\( T^{7} + \)\(28\!\cdots\!41\)\( T^{8} - \)\(38\!\cdots\!86\)\( T^{9} + \)\(28\!\cdots\!41\)\( p^{5} T^{10} - \)\(56\!\cdots\!07\)\( p^{10} T^{11} + \)\(38\!\cdots\!67\)\( p^{15} T^{12} - 689356483695756566 p^{20} T^{13} + 393408475518083 p^{25} T^{14} - 54947371329 p^{30} T^{15} + 27570110 p^{35} T^{16} - 1839 p^{40} T^{17} + p^{45} T^{18} \)
29 \( 1 + 8737 T + 100263490 T^{2} + 812860482637 T^{3} + 5877575658032654 T^{4} + 37024407518884704661 T^{5} + \)\(22\!\cdots\!59\)\( T^{6} + \)\(11\!\cdots\!90\)\( T^{7} + \)\(61\!\cdots\!04\)\( T^{8} + \)\(28\!\cdots\!94\)\( T^{9} + \)\(61\!\cdots\!04\)\( p^{5} T^{10} + \)\(11\!\cdots\!90\)\( p^{10} T^{11} + \)\(22\!\cdots\!59\)\( p^{15} T^{12} + 37024407518884704661 p^{20} T^{13} + 5877575658032654 p^{25} T^{14} + 812860482637 p^{30} T^{15} + 100263490 p^{35} T^{16} + 8737 p^{40} T^{17} + p^{45} T^{18} \)
31 \( 1 - 748 T + 75897937 T^{2} + 87335748108 T^{3} + 3911511988579655 T^{4} + 5672812818384581976 T^{5} + \)\(17\!\cdots\!49\)\( T^{6} + \)\(26\!\cdots\!84\)\( T^{7} + \)\(56\!\cdots\!86\)\( T^{8} + \)\(10\!\cdots\!68\)\( T^{9} + \)\(56\!\cdots\!86\)\( p^{5} T^{10} + \)\(26\!\cdots\!84\)\( p^{10} T^{11} + \)\(17\!\cdots\!49\)\( p^{15} T^{12} + 5672812818384581976 p^{20} T^{13} + 3911511988579655 p^{25} T^{14} + 87335748108 p^{30} T^{15} + 75897937 p^{35} T^{16} - 748 p^{40} T^{17} + p^{45} T^{18} \)
37 \( 1 + 15486 T + 406034081 T^{2} + 4455267036680 T^{3} + 69627769486559328 T^{4} + \)\(58\!\cdots\!48\)\( T^{5} + \)\(71\!\cdots\!32\)\( T^{6} + \)\(48\!\cdots\!40\)\( T^{7} + \)\(53\!\cdots\!30\)\( T^{8} + \)\(33\!\cdots\!88\)\( T^{9} + \)\(53\!\cdots\!30\)\( p^{5} T^{10} + \)\(48\!\cdots\!40\)\( p^{10} T^{11} + \)\(71\!\cdots\!32\)\( p^{15} T^{12} + \)\(58\!\cdots\!48\)\( p^{20} T^{13} + 69627769486559328 p^{25} T^{14} + 4455267036680 p^{30} T^{15} + 406034081 p^{35} T^{16} + 15486 p^{40} T^{17} + p^{45} T^{18} \)
41 \( 1 + 28676 T + 807443290 T^{2} + 15162634916010 T^{3} + 279540162665697191 T^{4} + \)\(41\!\cdots\!68\)\( T^{5} + \)\(61\!\cdots\!69\)\( T^{6} + \)\(77\!\cdots\!70\)\( T^{7} + \)\(96\!\cdots\!69\)\( T^{8} + \)\(10\!\cdots\!84\)\( T^{9} + \)\(96\!\cdots\!69\)\( p^{5} T^{10} + \)\(77\!\cdots\!70\)\( p^{10} T^{11} + \)\(61\!\cdots\!69\)\( p^{15} T^{12} + \)\(41\!\cdots\!68\)\( p^{20} T^{13} + 279540162665697191 p^{25} T^{14} + 15162634916010 p^{30} T^{15} + 807443290 p^{35} T^{16} + 28676 p^{40} T^{17} + p^{45} T^{18} \)
43 \( 1 - 28665 T + 905859098 T^{2} - 19568343598455 T^{3} + 410275978472684999 T^{4} - \)\(70\!\cdots\!58\)\( T^{5} + \)\(11\!\cdots\!11\)\( T^{6} - \)\(16\!\cdots\!25\)\( T^{7} + \)\(23\!\cdots\!49\)\( T^{8} - \)\(28\!\cdots\!26\)\( T^{9} + \)\(23\!\cdots\!49\)\( p^{5} T^{10} - \)\(16\!\cdots\!25\)\( p^{10} T^{11} + \)\(11\!\cdots\!11\)\( p^{15} T^{12} - \)\(70\!\cdots\!58\)\( p^{20} T^{13} + 410275978472684999 p^{25} T^{14} - 19568343598455 p^{30} T^{15} + 905859098 p^{35} T^{16} - 28665 p^{40} T^{17} + p^{45} T^{18} \)
47 \( 1 + 29452 T + 1346699157 T^{2} + 23094731728324 T^{3} + 695077981104733875 T^{4} + \)\(92\!\cdots\!92\)\( T^{5} + \)\(25\!\cdots\!29\)\( T^{6} + \)\(31\!\cdots\!36\)\( T^{7} + \)\(77\!\cdots\!42\)\( T^{8} + \)\(82\!\cdots\!48\)\( T^{9} + \)\(77\!\cdots\!42\)\( p^{5} T^{10} + \)\(31\!\cdots\!36\)\( p^{10} T^{11} + \)\(25\!\cdots\!29\)\( p^{15} T^{12} + \)\(92\!\cdots\!92\)\( p^{20} T^{13} + 695077981104733875 p^{25} T^{14} + 23094731728324 p^{30} T^{15} + 1346699157 p^{35} T^{16} + 29452 p^{40} T^{17} + p^{45} T^{18} \)
53 \( 1 - 75977 T + 4311797066 T^{2} - 190721914335121 T^{3} + 7007646765751779502 T^{4} - \)\(22\!\cdots\!57\)\( T^{5} + \)\(64\!\cdots\!47\)\( T^{6} - \)\(16\!\cdots\!26\)\( T^{7} + \)\(38\!\cdots\!24\)\( T^{8} - \)\(82\!\cdots\!74\)\( T^{9} + \)\(38\!\cdots\!24\)\( p^{5} T^{10} - \)\(16\!\cdots\!26\)\( p^{10} T^{11} + \)\(64\!\cdots\!47\)\( p^{15} T^{12} - \)\(22\!\cdots\!57\)\( p^{20} T^{13} + 7007646765751779502 p^{25} T^{14} - 190721914335121 p^{30} T^{15} + 4311797066 p^{35} T^{16} - 75977 p^{40} T^{17} + p^{45} T^{18} \)
59 \( 1 + 88142 T + 7408012125 T^{2} + 418488720267288 T^{3} + 21514792833002089743 T^{4} + \)\(91\!\cdots\!78\)\( T^{5} + \)\(35\!\cdots\!37\)\( T^{6} + \)\(11\!\cdots\!40\)\( T^{7} + \)\(37\!\cdots\!18\)\( T^{8} + \)\(10\!\cdots\!16\)\( T^{9} + \)\(37\!\cdots\!18\)\( p^{5} T^{10} + \)\(11\!\cdots\!40\)\( p^{10} T^{11} + \)\(35\!\cdots\!37\)\( p^{15} T^{12} + \)\(91\!\cdots\!78\)\( p^{20} T^{13} + 21514792833002089743 p^{25} T^{14} + 418488720267288 p^{30} T^{15} + 7408012125 p^{35} T^{16} + 88142 p^{40} T^{17} + p^{45} T^{18} \)
61 \( 1 - 28165 T + 5525406634 T^{2} - 111231076019257 T^{3} + 13564817030465760102 T^{4} - \)\(20\!\cdots\!21\)\( T^{5} + \)\(20\!\cdots\!83\)\( T^{6} - \)\(23\!\cdots\!82\)\( T^{7} + \)\(23\!\cdots\!32\)\( T^{8} - \)\(22\!\cdots\!54\)\( T^{9} + \)\(23\!\cdots\!32\)\( p^{5} T^{10} - \)\(23\!\cdots\!82\)\( p^{10} T^{11} + \)\(20\!\cdots\!83\)\( p^{15} T^{12} - \)\(20\!\cdots\!21\)\( p^{20} T^{13} + 13564817030465760102 p^{25} T^{14} - 111231076019257 p^{30} T^{15} + 5525406634 p^{35} T^{16} - 28165 p^{40} T^{17} + p^{45} T^{18} \)
67 \( 1 + 94754 T + 14705440952 T^{2} + 1016307598907474 T^{3} + 88638330878987469708 T^{4} + \)\(47\!\cdots\!90\)\( T^{5} + \)\(29\!\cdots\!49\)\( T^{6} + \)\(12\!\cdots\!96\)\( T^{7} + \)\(61\!\cdots\!56\)\( T^{8} + \)\(21\!\cdots\!48\)\( T^{9} + \)\(61\!\cdots\!56\)\( p^{5} T^{10} + \)\(12\!\cdots\!96\)\( p^{10} T^{11} + \)\(29\!\cdots\!49\)\( p^{15} T^{12} + \)\(47\!\cdots\!90\)\( p^{20} T^{13} + 88638330878987469708 p^{25} T^{14} + 1016307598907474 p^{30} T^{15} + 14705440952 p^{35} T^{16} + 94754 p^{40} T^{17} + p^{45} T^{18} \)
71 \( 1 + 70562 T + 145680381 p T^{2} + 535896116798952 T^{3} + 45814913528036188080 T^{4} + \)\(19\!\cdots\!72\)\( T^{5} + \)\(12\!\cdots\!20\)\( T^{6} + \)\(50\!\cdots\!60\)\( T^{7} + \)\(27\!\cdots\!26\)\( T^{8} + \)\(98\!\cdots\!80\)\( T^{9} + \)\(27\!\cdots\!26\)\( p^{5} T^{10} + \)\(50\!\cdots\!60\)\( p^{10} T^{11} + \)\(12\!\cdots\!20\)\( p^{15} T^{12} + \)\(19\!\cdots\!72\)\( p^{20} T^{13} + 45814913528036188080 p^{25} T^{14} + 535896116798952 p^{30} T^{15} + 145680381 p^{36} T^{16} + 70562 p^{40} T^{17} + p^{45} T^{18} \)
73 \( 1 - 60602 T + 11519959226 T^{2} - 450972296343384 T^{3} + 50569765709477765011 T^{4} - \)\(90\!\cdots\!56\)\( T^{5} + \)\(10\!\cdots\!77\)\( T^{6} + \)\(13\!\cdots\!72\)\( T^{7} + \)\(10\!\cdots\!17\)\( T^{8} + \)\(74\!\cdots\!16\)\( T^{9} + \)\(10\!\cdots\!17\)\( p^{5} T^{10} + \)\(13\!\cdots\!72\)\( p^{10} T^{11} + \)\(10\!\cdots\!77\)\( p^{15} T^{12} - \)\(90\!\cdots\!56\)\( p^{20} T^{13} + 50569765709477765011 p^{25} T^{14} - 450972296343384 p^{30} T^{15} + 11519959226 p^{35} T^{16} - 60602 p^{40} T^{17} + p^{45} T^{18} \)
79 \( 1 + 164073 T + 28189254670 T^{2} + 2711262477059871 T^{3} + \)\(27\!\cdots\!51\)\( T^{4} + \)\(19\!\cdots\!66\)\( T^{5} + \)\(15\!\cdots\!63\)\( T^{6} + \)\(95\!\cdots\!53\)\( T^{7} + \)\(64\!\cdots\!81\)\( T^{8} + \)\(34\!\cdots\!70\)\( T^{9} + \)\(64\!\cdots\!81\)\( p^{5} T^{10} + \)\(95\!\cdots\!53\)\( p^{10} T^{11} + \)\(15\!\cdots\!63\)\( p^{15} T^{12} + \)\(19\!\cdots\!66\)\( p^{20} T^{13} + \)\(27\!\cdots\!51\)\( p^{25} T^{14} + 2711262477059871 p^{30} T^{15} + 28189254670 p^{35} T^{16} + 164073 p^{40} T^{17} + p^{45} T^{18} \)
83 \( 1 + 22458 T + 4152756288 T^{2} - 65474123064726 T^{3} + 17405654864177049364 T^{4} + \)\(56\!\cdots\!58\)\( T^{5} + \)\(10\!\cdots\!41\)\( T^{6} + \)\(41\!\cdots\!84\)\( T^{7} + \)\(20\!\cdots\!72\)\( T^{8} + \)\(10\!\cdots\!28\)\( T^{9} + \)\(20\!\cdots\!72\)\( p^{5} T^{10} + \)\(41\!\cdots\!84\)\( p^{10} T^{11} + \)\(10\!\cdots\!41\)\( p^{15} T^{12} + \)\(56\!\cdots\!58\)\( p^{20} T^{13} + 17405654864177049364 p^{25} T^{14} - 65474123064726 p^{30} T^{15} + 4152756288 p^{35} T^{16} + 22458 p^{40} T^{17} + p^{45} T^{18} \)
89 \( 1 + 252698 T + 59335278754 T^{2} + 8555077606937916 T^{3} + \)\(11\!\cdots\!11\)\( T^{4} + \)\(11\!\cdots\!76\)\( T^{5} + \)\(10\!\cdots\!97\)\( T^{6} + \)\(77\!\cdots\!76\)\( T^{7} + \)\(59\!\cdots\!77\)\( T^{8} + \)\(42\!\cdots\!68\)\( T^{9} + \)\(59\!\cdots\!77\)\( p^{5} T^{10} + \)\(77\!\cdots\!76\)\( p^{10} T^{11} + \)\(10\!\cdots\!97\)\( p^{15} T^{12} + \)\(11\!\cdots\!76\)\( p^{20} T^{13} + \)\(11\!\cdots\!11\)\( p^{25} T^{14} + 8555077606937916 p^{30} T^{15} + 59335278754 p^{35} T^{16} + 252698 p^{40} T^{17} + p^{45} T^{18} \)
97 \( 1 - 137986 T + 49335221217 T^{2} - 4614937388745376 T^{3} + \)\(90\!\cdots\!56\)\( T^{4} - \)\(48\!\cdots\!84\)\( T^{5} + \)\(72\!\cdots\!68\)\( T^{6} + \)\(13\!\cdots\!72\)\( T^{7} + \)\(22\!\cdots\!46\)\( T^{8} + \)\(30\!\cdots\!76\)\( T^{9} + \)\(22\!\cdots\!46\)\( p^{5} T^{10} + \)\(13\!\cdots\!72\)\( p^{10} T^{11} + \)\(72\!\cdots\!68\)\( p^{15} T^{12} - \)\(48\!\cdots\!84\)\( p^{20} T^{13} + \)\(90\!\cdots\!56\)\( p^{25} T^{14} - 4614937388745376 p^{30} T^{15} + 49335221217 p^{35} T^{16} - 137986 p^{40} T^{17} + p^{45} T^{18} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{18} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.48121316880551093515981470492, −4.30210116310734126445653076622, −4.28006057080907792511649350576, −4.05808330657680428863465895109, −3.99399976567016537951048892975, −3.79661444868374504347434088296, −3.45592638092548388549097759977, −3.32915391293092424549672969131, −3.30989520344360956787539584261, −3.27903928286136950592885603599, −3.13999922285196104057989101240, −3.03878643102663109794731415565, −2.92274467689949341862851432910, −2.59655582019379787975217448927, −2.51764199122201399801349149876, −2.35182429314159788874434637234, −2.27009398876332768304454620923, −2.13332138496309952487703253777, −1.67704801071822074078879513202, −1.51421401740714103071638362302, −1.50641492870067503442889471003, −1.13114352382471593720895738788, −1.03803694548153880708349090320, −1.03375655201874272437171511585, −1.02225915352418629172568426778, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.02225915352418629172568426778, 1.03375655201874272437171511585, 1.03803694548153880708349090320, 1.13114352382471593720895738788, 1.50641492870067503442889471003, 1.51421401740714103071638362302, 1.67704801071822074078879513202, 2.13332138496309952487703253777, 2.27009398876332768304454620923, 2.35182429314159788874434637234, 2.51764199122201399801349149876, 2.59655582019379787975217448927, 2.92274467689949341862851432910, 3.03878643102663109794731415565, 3.13999922285196104057989101240, 3.27903928286136950592885603599, 3.30989520344360956787539584261, 3.32915391293092424549672969131, 3.45592638092548388549097759977, 3.79661444868374504347434088296, 3.99399976567016537951048892975, 4.05808330657680428863465895109, 4.28006057080907792511649350576, 4.30210116310734126445653076622, 4.48121316880551093515981470492

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.