Properties

Label 16-950e8-1.1-c1e8-0-0
Degree $16$
Conductor $6.634\times 10^{23}$
Sign $1$
Analytic cond. $1.09649\times 10^{7}$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 3-s + 6·4-s − 4·6-s − 12·7-s + 9-s + 10·11-s − 6·12-s − 9·13-s − 48·14-s − 15·16-s − 5·17-s + 4·18-s + 12·21-s + 40·22-s − 6·23-s − 36·26-s − 8·27-s − 72·28-s + 17·29-s + 22·31-s − 24·32-s − 10·33-s − 20·34-s + 6·36-s + 8·37-s + 9·39-s + ⋯
L(s)  = 1  + 2.82·2-s − 0.577·3-s + 3·4-s − 1.63·6-s − 4.53·7-s + 1/3·9-s + 3.01·11-s − 1.73·12-s − 2.49·13-s − 12.8·14-s − 3.75·16-s − 1.21·17-s + 0.942·18-s + 2.61·21-s + 8.52·22-s − 1.25·23-s − 7.06·26-s − 1.53·27-s − 13.6·28-s + 3.15·29-s + 3.95·31-s − 4.24·32-s − 1.74·33-s − 3.42·34-s + 36-s + 1.31·37-s + 1.44·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{16} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{16} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 5^{16} \cdot 19^{8}\)
Sign: $1$
Analytic conductor: \(1.09649\times 10^{7}\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{950} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 5^{16} \cdot 19^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1699103135\)
\(L(\frac12)\) \(\approx\) \(0.1699103135\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - T + T^{2} )^{4} \)
5 \( 1 \)
19 \( 1 + 35 T^{2} + 36 p T^{4} + 35 p^{2} T^{6} + p^{4} T^{8} \)
good3 \( 1 + T + 7 T^{3} + 8 T^{4} - 4 T^{5} + 40 T^{6} + 22 p T^{7} - 47 T^{8} + 22 p^{2} T^{9} + 40 p^{2} T^{10} - 4 p^{3} T^{11} + 8 p^{4} T^{12} + 7 p^{5} T^{13} + p^{7} T^{15} + p^{8} T^{16} \)
7 \( ( 1 + 6 T + 3 p T^{2} + 44 T^{3} + 90 T^{4} + 44 p T^{5} + 3 p^{3} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
11 \( ( 1 - 5 T + 24 T^{2} - 42 T^{3} + 169 T^{4} - 42 p T^{5} + 24 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
13 \( 1 + 9 T + 28 T^{2} + 63 T^{3} + 160 T^{4} - 486 T^{5} - 5114 T^{6} - 22158 T^{7} - 86609 T^{8} - 22158 p T^{9} - 5114 p^{2} T^{10} - 486 p^{3} T^{11} + 160 p^{4} T^{12} + 63 p^{5} T^{13} + 28 p^{6} T^{14} + 9 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 + 5 T - 15 T^{2} - 160 T^{3} - 307 T^{4} + 190 T^{5} - 60 T^{6} + 18825 T^{7} + 162978 T^{8} + 18825 p T^{9} - 60 p^{2} T^{10} + 190 p^{3} T^{11} - 307 p^{4} T^{12} - 160 p^{5} T^{13} - 15 p^{6} T^{14} + 5 p^{7} T^{15} + p^{8} T^{16} \)
23 \( ( 1 + 3 T - T^{2} - 108 T^{3} - 636 T^{4} - 108 p T^{5} - p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
29 \( 1 - 17 T + 94 T^{2} - 357 T^{3} + 3704 T^{4} - 19244 T^{5} - 3426 T^{6} - 1700 p T^{7} + 2210431 T^{8} - 1700 p^{2} T^{9} - 3426 p^{2} T^{10} - 19244 p^{3} T^{11} + 3704 p^{4} T^{12} - 357 p^{5} T^{13} + 94 p^{6} T^{14} - 17 p^{7} T^{15} + p^{8} T^{16} \)
31 \( ( 1 - 11 T + 83 T^{2} - 663 T^{3} + 4342 T^{4} - 663 p T^{5} + 83 p^{2} T^{6} - 11 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
37 \( ( 1 - 4 T + 38 T^{2} - 216 T^{3} + 3170 T^{4} - 216 p T^{5} + 38 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
41 \( 1 - 7 T - 15 T^{2} - 808 T^{3} + 5909 T^{4} + 11158 T^{5} + 334620 T^{6} - 2279715 T^{7} - 3979470 T^{8} - 2279715 p T^{9} + 334620 p^{2} T^{10} + 11158 p^{3} T^{11} + 5909 p^{4} T^{12} - 808 p^{5} T^{13} - 15 p^{6} T^{14} - 7 p^{7} T^{15} + p^{8} T^{16} \)
43 \( 1 - 13 T - 4 T^{2} + 505 T^{3} + 1020 T^{4} - 11224 T^{5} - 138244 T^{6} + 3186 p T^{7} + 180427 p T^{8} + 3186 p^{2} T^{9} - 138244 p^{2} T^{10} - 11224 p^{3} T^{11} + 1020 p^{4} T^{12} + 505 p^{5} T^{13} - 4 p^{6} T^{14} - 13 p^{7} T^{15} + p^{8} T^{16} \)
47 \( 1 + 14 T - 45 T^{2} - 562 T^{3} + 12527 T^{4} + 62728 T^{5} - 695664 T^{6} - 248448 T^{7} + 49557882 T^{8} - 248448 p T^{9} - 695664 p^{2} T^{10} + 62728 p^{3} T^{11} + 12527 p^{4} T^{12} - 562 p^{5} T^{13} - 45 p^{6} T^{14} + 14 p^{7} T^{15} + p^{8} T^{16} \)
53 \( 1 - 14 T - 69 T^{2} + 730 T^{3} + 319 p T^{4} - 83296 T^{5} - 1123140 T^{6} + 485772 T^{7} + 86530722 T^{8} + 485772 p T^{9} - 1123140 p^{2} T^{10} - 83296 p^{3} T^{11} + 319 p^{5} T^{12} + 730 p^{5} T^{13} - 69 p^{6} T^{14} - 14 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 - 14 T - 78 T^{2} + 796 T^{3} + 17885 T^{4} - 77752 T^{5} - 1427730 T^{6} + 1292118 T^{7} + 103988436 T^{8} + 1292118 p T^{9} - 1427730 p^{2} T^{10} - 77752 p^{3} T^{11} + 17885 p^{4} T^{12} + 796 p^{5} T^{13} - 78 p^{6} T^{14} - 14 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 + 9 T - 126 T^{2} - 1175 T^{3} + 11382 T^{4} + 86764 T^{5} - 669848 T^{6} - 2353650 T^{7} + 39432547 T^{8} - 2353650 p T^{9} - 669848 p^{2} T^{10} + 86764 p^{3} T^{11} + 11382 p^{4} T^{12} - 1175 p^{5} T^{13} - 126 p^{6} T^{14} + 9 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 + 6 T - 225 T^{2} - 818 T^{3} + 34977 T^{4} + 79072 T^{5} - 3498974 T^{6} - 1872192 T^{7} + 276094822 T^{8} - 1872192 p T^{9} - 3498974 p^{2} T^{10} + 79072 p^{3} T^{11} + 34977 p^{4} T^{12} - 818 p^{5} T^{13} - 225 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16} \)
71 \( 1 - 14 T - 45 T^{2} + 622 T^{3} + 7661 T^{4} + 5168 T^{5} - 974214 T^{6} + 1505364 T^{7} + 42583530 T^{8} + 1505364 p T^{9} - 974214 p^{2} T^{10} + 5168 p^{3} T^{11} + 7661 p^{4} T^{12} + 622 p^{5} T^{13} - 45 p^{6} T^{14} - 14 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 - 11 T - 118 T^{2} + 317 T^{3} + 19274 T^{4} + 16592 T^{5} - 1638744 T^{6} + 1228122 T^{7} + 71418583 T^{8} + 1228122 p T^{9} - 1638744 p^{2} T^{10} + 16592 p^{3} T^{11} + 19274 p^{4} T^{12} + 317 p^{5} T^{13} - 118 p^{6} T^{14} - 11 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 + 17 T + 2 T^{2} - 1139 T^{3} + 1002 T^{4} + 74018 T^{5} - 76090 T^{6} - 6700686 T^{7} - 70425071 T^{8} - 6700686 p T^{9} - 76090 p^{2} T^{10} + 74018 p^{3} T^{11} + 1002 p^{4} T^{12} - 1139 p^{5} T^{13} + 2 p^{6} T^{14} + 17 p^{7} T^{15} + p^{8} T^{16} \)
83 \( ( 1 - 23 T + 463 T^{2} - 5583 T^{3} + 61208 T^{4} - 5583 p T^{5} + 463 p^{2} T^{6} - 23 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
89 \( 1 - 14 T - 116 T^{2} + 888 T^{3} + 23783 T^{4} - 24296 T^{5} - 2897328 T^{6} + 4851182 T^{7} + 179834968 T^{8} + 4851182 p T^{9} - 2897328 p^{2} T^{10} - 24296 p^{3} T^{11} + 23783 p^{4} T^{12} + 888 p^{5} T^{13} - 116 p^{6} T^{14} - 14 p^{7} T^{15} + p^{8} T^{16} \)
97 \( 1 - 17 T - 109 T^{2} + 3026 T^{3} + 16787 T^{4} - 438430 T^{5} + 149646 T^{6} + 13000257 T^{7} + 32211550 T^{8} + 13000257 p T^{9} + 149646 p^{2} T^{10} - 438430 p^{3} T^{11} + 16787 p^{4} T^{12} + 3026 p^{5} T^{13} - 109 p^{6} T^{14} - 17 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.32215986321796936502901510687, −4.18980146052272614897284223062, −4.02127353296723285186274160380, −3.93488364768338585272986947507, −3.86017231633254803269085929043, −3.74188997990561928370729707229, −3.57042328987009103114924013227, −3.46425515266230373473441642647, −3.44746303090690162788368293314, −3.24495861690733582389711505639, −2.84730480058810184550735860944, −2.81298447741939950013799980797, −2.76308146997164563599962338671, −2.58755166472602948518837629595, −2.52065732923529231598917618918, −2.48911409034411732175461367504, −2.36810268098587072667134303254, −1.99795340670003467585805868442, −1.90192225884330251792002311385, −1.18974264539626580348104910164, −1.15190003861496537002423859161, −1.08513734195960753942756619999, −0.822720642827889143756087787155, −0.40388572879925667267746415683, −0.05097454634475016535305884233, 0.05097454634475016535305884233, 0.40388572879925667267746415683, 0.822720642827889143756087787155, 1.08513734195960753942756619999, 1.15190003861496537002423859161, 1.18974264539626580348104910164, 1.90192225884330251792002311385, 1.99795340670003467585805868442, 2.36810268098587072667134303254, 2.48911409034411732175461367504, 2.52065732923529231598917618918, 2.58755166472602948518837629595, 2.76308146997164563599962338671, 2.81298447741939950013799980797, 2.84730480058810184550735860944, 3.24495861690733582389711505639, 3.44746303090690162788368293314, 3.46425515266230373473441642647, 3.57042328987009103114924013227, 3.74188997990561928370729707229, 3.86017231633254803269085929043, 3.93488364768338585272986947507, 4.02127353296723285186274160380, 4.18980146052272614897284223062, 4.32215986321796936502901510687

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.