Properties

Label 16-7168e8-1.1-c1e8-0-1
Degree $16$
Conductor $6.969\times 10^{30}$
Sign $1$
Analytic cond. $1.15186\times 10^{14}$
Root an. cond. $7.56549$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s + 8·7-s − 6·9-s + 12·11-s + 20·13-s + 4·17-s + 4·19-s + 8·23-s + 18·25-s − 4·27-s + 8·29-s − 4·31-s + 64·35-s + 8·37-s − 12·41-s − 4·43-s − 48·45-s + 20·47-s + 36·49-s + 40·53-s + 96·55-s + 4·59-s − 8·61-s − 48·63-s + 160·65-s + 28·67-s − 16·71-s + ⋯
L(s)  = 1  + 3.57·5-s + 3.02·7-s − 2·9-s + 3.61·11-s + 5.54·13-s + 0.970·17-s + 0.917·19-s + 1.66·23-s + 18/5·25-s − 0.769·27-s + 1.48·29-s − 0.718·31-s + 10.8·35-s + 1.31·37-s − 1.87·41-s − 0.609·43-s − 7.15·45-s + 2.91·47-s + 36/7·49-s + 5.49·53-s + 12.9·55-s + 0.520·59-s − 1.02·61-s − 6.04·63-s + 19.8·65-s + 3.42·67-s − 1.89·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{80} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{80} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{80} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1.15186\times 10^{14}\)
Root analytic conductor: \(7.56549\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{7168} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{80} \cdot 7^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(860.4616904\)
\(L(\frac12)\) \(\approx\) \(860.4616904\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( ( 1 - T )^{8} \)
good3 \( 1 + 2 p T^{2} + 4 T^{3} + 22 T^{4} + 4 p^{2} T^{5} + 58 T^{6} + 176 T^{7} + 130 T^{8} + 176 p T^{9} + 58 p^{2} T^{10} + 4 p^{5} T^{11} + 22 p^{4} T^{12} + 4 p^{5} T^{13} + 2 p^{7} T^{14} + p^{8} T^{16} \)
5 \( 1 - 8 T + 46 T^{2} - 196 T^{3} + 718 T^{4} - 2276 T^{5} + 6522 T^{6} - 16768 T^{7} + 39442 T^{8} - 16768 p T^{9} + 6522 p^{2} T^{10} - 2276 p^{3} T^{11} + 718 p^{4} T^{12} - 196 p^{5} T^{13} + 46 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 - 12 T + 120 T^{2} - 76 p T^{3} + 5008 T^{4} - 25012 T^{5} + 110776 T^{6} - 431548 T^{7} + 1515358 T^{8} - 431548 p T^{9} + 110776 p^{2} T^{10} - 25012 p^{3} T^{11} + 5008 p^{4} T^{12} - 76 p^{6} T^{13} + 120 p^{6} T^{14} - 12 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 - 20 T + 242 T^{2} - 2104 T^{3} + 14614 T^{4} - 84480 T^{5} + 420214 T^{6} - 140340 p T^{7} + 6996354 T^{8} - 140340 p^{2} T^{9} + 420214 p^{2} T^{10} - 84480 p^{3} T^{11} + 14614 p^{4} T^{12} - 2104 p^{5} T^{13} + 242 p^{6} T^{14} - 20 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 - 4 T + 36 T^{2} - 12 p T^{3} + 1420 T^{4} - 6148 T^{5} + 35260 T^{6} - 140460 T^{7} + 681382 T^{8} - 140460 p T^{9} + 35260 p^{2} T^{10} - 6148 p^{3} T^{11} + 1420 p^{4} T^{12} - 12 p^{6} T^{13} + 36 p^{6} T^{14} - 4 p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 - 4 T + 106 T^{2} - 392 T^{3} + 5390 T^{4} - 17608 T^{5} + 173462 T^{6} - 487988 T^{7} + 3893458 T^{8} - 487988 p T^{9} + 173462 p^{2} T^{10} - 17608 p^{3} T^{11} + 5390 p^{4} T^{12} - 392 p^{5} T^{13} + 106 p^{6} T^{14} - 4 p^{7} T^{15} + p^{8} T^{16} \)
23 \( 1 - 8 T + 100 T^{2} - 600 T^{3} + 4648 T^{4} - 25432 T^{5} + 158988 T^{6} - 793096 T^{7} + 4198990 T^{8} - 793096 p T^{9} + 158988 p^{2} T^{10} - 25432 p^{3} T^{11} + 4648 p^{4} T^{12} - 600 p^{5} T^{13} + 100 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
29 \( 1 - 8 T + 136 T^{2} - 744 T^{3} + 8404 T^{4} - 35416 T^{5} + 338520 T^{6} - 1205752 T^{7} + 10809670 T^{8} - 1205752 p T^{9} + 338520 p^{2} T^{10} - 35416 p^{3} T^{11} + 8404 p^{4} T^{12} - 744 p^{5} T^{13} + 136 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
31 \( 1 + 4 T + 116 T^{2} + 292 T^{3} + 7660 T^{4} + 556 p T^{5} + 363628 T^{6} + 667188 T^{7} + 12635238 T^{8} + 667188 p T^{9} + 363628 p^{2} T^{10} + 556 p^{4} T^{11} + 7660 p^{4} T^{12} + 292 p^{5} T^{13} + 116 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
37 \( 1 - 8 T + 128 T^{2} - 968 T^{3} + 10276 T^{4} - 66296 T^{5} + 581248 T^{6} - 3372408 T^{7} + 24790566 T^{8} - 3372408 p T^{9} + 581248 p^{2} T^{10} - 66296 p^{3} T^{11} + 10276 p^{4} T^{12} - 968 p^{5} T^{13} + 128 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
41 \( 1 + 12 T + 252 T^{2} + 2020 T^{3} + 23932 T^{4} + 134252 T^{5} + 1230436 T^{6} + 5322212 T^{7} + 49511686 T^{8} + 5322212 p T^{9} + 1230436 p^{2} T^{10} + 134252 p^{3} T^{11} + 23932 p^{4} T^{12} + 2020 p^{5} T^{13} + 252 p^{6} T^{14} + 12 p^{7} T^{15} + p^{8} T^{16} \)
43 \( 1 + 4 T + 224 T^{2} + 668 T^{3} + 23824 T^{4} + 52140 T^{5} + 1619632 T^{6} + 2724756 T^{7} + 80014686 T^{8} + 2724756 p T^{9} + 1619632 p^{2} T^{10} + 52140 p^{3} T^{11} + 23824 p^{4} T^{12} + 668 p^{5} T^{13} + 224 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
47 \( 1 - 20 T + 444 T^{2} - 5796 T^{3} + 76348 T^{4} - 746420 T^{5} + 7220260 T^{6} - 55738788 T^{7} + 423816262 T^{8} - 55738788 p T^{9} + 7220260 p^{2} T^{10} - 746420 p^{3} T^{11} + 76348 p^{4} T^{12} - 5796 p^{5} T^{13} + 444 p^{6} T^{14} - 20 p^{7} T^{15} + p^{8} T^{16} \)
53 \( 1 - 40 T + 944 T^{2} - 15976 T^{3} + 215620 T^{4} - 2431704 T^{5} + 23723408 T^{6} - 204071384 T^{7} + 1568992486 T^{8} - 204071384 p T^{9} + 23723408 p^{2} T^{10} - 2431704 p^{3} T^{11} + 215620 p^{4} T^{12} - 15976 p^{5} T^{13} + 944 p^{6} T^{14} - 40 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 - 4 T + 266 T^{2} - 688 T^{3} + 34798 T^{4} - 54096 T^{5} + 3056918 T^{6} - 3110036 T^{7} + 203887378 T^{8} - 3110036 p T^{9} + 3056918 p^{2} T^{10} - 54096 p^{3} T^{11} + 34798 p^{4} T^{12} - 688 p^{5} T^{13} + 266 p^{6} T^{14} - 4 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 + 8 T + 6 p T^{2} + 2292 T^{3} + 60526 T^{4} + 303652 T^{5} + 6159546 T^{6} + 25551600 T^{7} + 439390098 T^{8} + 25551600 p T^{9} + 6159546 p^{2} T^{10} + 303652 p^{3} T^{11} + 60526 p^{4} T^{12} + 2292 p^{5} T^{13} + 6 p^{7} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 - 28 T + 552 T^{2} - 7860 T^{3} + 104224 T^{4} - 1197188 T^{5} + 12702408 T^{6} - 116708268 T^{7} + 1007083326 T^{8} - 116708268 p T^{9} + 12702408 p^{2} T^{10} - 1197188 p^{3} T^{11} + 104224 p^{4} T^{12} - 7860 p^{5} T^{13} + 552 p^{6} T^{14} - 28 p^{7} T^{15} + p^{8} T^{16} \)
71 \( 1 + 16 T + 552 T^{2} + 6864 T^{3} + 131788 T^{4} + 1322128 T^{5} + 18146008 T^{6} + 148647120 T^{7} + 1592348710 T^{8} + 148647120 p T^{9} + 18146008 p^{2} T^{10} + 1322128 p^{3} T^{11} + 131788 p^{4} T^{12} + 6864 p^{5} T^{13} + 552 p^{6} T^{14} + 16 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 - 16 T + 416 T^{2} - 5296 T^{3} + 86284 T^{4} - 901648 T^{5} + 11082784 T^{6} - 97127472 T^{7} + 972956070 T^{8} - 97127472 p T^{9} + 11082784 p^{2} T^{10} - 901648 p^{3} T^{11} + 86284 p^{4} T^{12} - 5296 p^{5} T^{13} + 416 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 + 344 T^{2} - 704 T^{3} + 63740 T^{4} - 170560 T^{5} + 8074984 T^{6} - 22406016 T^{7} + 736732678 T^{8} - 22406016 p T^{9} + 8074984 p^{2} T^{10} - 170560 p^{3} T^{11} + 63740 p^{4} T^{12} - 704 p^{5} T^{13} + 344 p^{6} T^{14} + p^{8} T^{16} \)
83 \( 1 + 8 T + 246 T^{2} + 12 p T^{3} + 25750 T^{4} + 40580 T^{5} + 1876234 T^{6} - 2703720 T^{7} + 123032194 T^{8} - 2703720 p T^{9} + 1876234 p^{2} T^{10} + 40580 p^{3} T^{11} + 25750 p^{4} T^{12} + 12 p^{6} T^{13} + 246 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
89 \( ( 1 - 8 T + 340 T^{2} - 2104 T^{3} + 44694 T^{4} - 2104 p T^{5} + 340 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
97 \( 1 + 36 T + 892 T^{2} + 16188 T^{3} + 246108 T^{4} + 3208884 T^{5} + 37592036 T^{6} + 406022892 T^{7} + 4110173318 T^{8} + 406022892 p T^{9} + 37592036 p^{2} T^{10} + 3208884 p^{3} T^{11} + 246108 p^{4} T^{12} + 16188 p^{5} T^{13} + 892 p^{6} T^{14} + 36 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.33598093360609064480212483750, −3.03367989629013150013954950645, −2.93381585435001037370060836696, −2.68326246471493526524255283805, −2.66650969943729044098254210918, −2.65159163783673107073952631272, −2.64444835546814729846663915681, −2.46830182088902921398979615083, −2.32111267703909089201099934838, −2.05122393751653222900864966016, −1.98670504150592735051562646436, −1.90017172662275584668922331137, −1.67671400631649522553928914543, −1.67490647517463111915289408980, −1.58936170229117879973206929251, −1.57829574854609844276071928048, −1.43847884252333167838144276985, −1.37033412266203473872607281353, −1.13661785374164485207396009259, −1.07983927757152369005050847453, −0.831394001312710321706111152359, −0.75543541468940513809408736676, −0.73764909207333923297429067791, −0.60695176692492363699790233119, −0.48742259202356549284501420870, 0.48742259202356549284501420870, 0.60695176692492363699790233119, 0.73764909207333923297429067791, 0.75543541468940513809408736676, 0.831394001312710321706111152359, 1.07983927757152369005050847453, 1.13661785374164485207396009259, 1.37033412266203473872607281353, 1.43847884252333167838144276985, 1.57829574854609844276071928048, 1.58936170229117879973206929251, 1.67490647517463111915289408980, 1.67671400631649522553928914543, 1.90017172662275584668922331137, 1.98670504150592735051562646436, 2.05122393751653222900864966016, 2.32111267703909089201099934838, 2.46830182088902921398979615083, 2.64444835546814729846663915681, 2.65159163783673107073952631272, 2.66650969943729044098254210918, 2.68326246471493526524255283805, 2.93381585435001037370060836696, 3.03367989629013150013954950645, 3.33598093360609064480212483750

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.