Properties

Label 16-63e8-1.1-c7e8-0-0
Degree $16$
Conductor $2.482\times 10^{14}$
Sign $1$
Analytic cond. $2.25032\times 10^{10}$
Root an. cond. $4.43624$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·2-s + 100·4-s + 252·5-s + 672·7-s − 384·8-s − 1.51e3·10-s − 3.97e3·11-s − 2.35e3·13-s − 4.03e3·14-s + 848·16-s + 5.63e4·17-s − 4.17e4·19-s + 2.52e4·20-s + 2.38e4·22-s + 1.31e5·23-s + 2.22e5·25-s + 1.41e4·26-s + 6.72e4·28-s − 6.81e4·29-s − 4.01e5·31-s − 5.52e4·32-s − 3.38e5·34-s + 1.69e5·35-s + 5.39e3·37-s + 2.50e5·38-s − 9.67e4·40-s − 8.20e5·41-s + ⋯
L(s)  = 1  − 0.530·2-s + 0.781·4-s + 0.901·5-s + 0.740·7-s − 0.265·8-s − 0.478·10-s − 0.899·11-s − 0.296·13-s − 0.392·14-s + 0.0517·16-s + 2.78·17-s − 1.39·19-s + 0.704·20-s + 0.477·22-s + 2.25·23-s + 2.84·25-s + 0.157·26-s + 0.578·28-s − 0.518·29-s − 2.41·31-s − 0.297·32-s − 1.47·34-s + 0.667·35-s + 0.0175·37-s + 0.740·38-s − 0.239·40-s − 1.86·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{16} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(2.25032\times 10^{10}\)
Root analytic conductor: \(4.43624\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{16} \cdot 7^{8} ,\ ( \ : [7/2]^{8} ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(7.766230530\)
\(L(\frac12)\) \(\approx\) \(7.766230530\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 96 p T + 33116 p^{2} T^{2} - 158880 p^{4} T^{3} + 1507914 p^{7} T^{4} - 158880 p^{11} T^{5} + 33116 p^{16} T^{6} - 96 p^{22} T^{7} + p^{28} T^{8} \)
good2 \( 1 + 3 p T - p^{6} T^{2} - 75 p^{3} T^{3} + 133 p^{5} T^{4} + 3471 p^{5} T^{5} + 46275 p^{6} T^{6} + 32577 p^{8} T^{7} - 315199 p^{10} T^{8} + 32577 p^{15} T^{9} + 46275 p^{20} T^{10} + 3471 p^{26} T^{11} + 133 p^{33} T^{12} - 75 p^{38} T^{13} - p^{48} T^{14} + 3 p^{50} T^{15} + p^{56} T^{16} \)
5 \( 1 - 252 T - 158506 T^{2} + 4582536 p T^{3} + 674342201 p^{2} T^{4} - 795864888 p^{4} T^{5} - 2408486026458 p^{4} T^{6} + 6152884831212 p^{5} T^{7} + 6846672196907924 p^{6} T^{8} + 6152884831212 p^{12} T^{9} - 2408486026458 p^{18} T^{10} - 795864888 p^{25} T^{11} + 674342201 p^{30} T^{12} + 4582536 p^{36} T^{13} - 158506 p^{42} T^{14} - 252 p^{49} T^{15} + p^{56} T^{16} \)
11 \( 1 + 3972 T - 44545426 T^{2} - 16974598392 p T^{3} + 1193279820296585 T^{4} + 4311182308727377824 T^{5} - \)\(21\!\cdots\!46\)\( T^{6} - \)\(39\!\cdots\!00\)\( T^{7} + \)\(37\!\cdots\!60\)\( T^{8} - \)\(39\!\cdots\!00\)\( p^{7} T^{9} - \)\(21\!\cdots\!46\)\( p^{14} T^{10} + 4311182308727377824 p^{21} T^{11} + 1193279820296585 p^{28} T^{12} - 16974598392 p^{36} T^{13} - 44545426 p^{42} T^{14} + 3972 p^{49} T^{15} + p^{56} T^{16} \)
13 \( ( 1 + 1176 T + 151551116 T^{2} + 19538457960 p T^{3} + 75518676758118 p^{2} T^{4} + 19538457960 p^{8} T^{5} + 151551116 p^{14} T^{6} + 1176 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
17 \( 1 - 56364 T + 709129558 T^{2} + 4712531411112 T^{3} + 360653231962445473 T^{4} - \)\(17\!\cdots\!28\)\( T^{5} + \)\(20\!\cdots\!10\)\( T^{6} - \)\(22\!\cdots\!96\)\( T^{7} + \)\(74\!\cdots\!84\)\( T^{8} - \)\(22\!\cdots\!96\)\( p^{7} T^{9} + \)\(20\!\cdots\!10\)\( p^{14} T^{10} - \)\(17\!\cdots\!28\)\( p^{21} T^{11} + 360653231962445473 p^{28} T^{12} + 4712531411112 p^{35} T^{13} + 709129558 p^{42} T^{14} - 56364 p^{49} T^{15} + p^{56} T^{16} \)
19 \( 1 + 41748 T - 2001962786 T^{2} - 58487933247240 T^{3} + 4448060922484490329 T^{4} + \)\(73\!\cdots\!44\)\( T^{5} - \)\(55\!\cdots\!70\)\( T^{6} - \)\(17\!\cdots\!88\)\( T^{7} + \)\(62\!\cdots\!72\)\( T^{8} - \)\(17\!\cdots\!88\)\( p^{7} T^{9} - \)\(55\!\cdots\!70\)\( p^{14} T^{10} + \)\(73\!\cdots\!44\)\( p^{21} T^{11} + 4448060922484490329 p^{28} T^{12} - 58487933247240 p^{35} T^{13} - 2001962786 p^{42} T^{14} + 41748 p^{49} T^{15} + p^{56} T^{16} \)
23 \( 1 - 131748 T + 1744906414 T^{2} + 95298488634120 T^{3} + 26557457139118316761 T^{4} - \)\(59\!\cdots\!56\)\( T^{5} - \)\(14\!\cdots\!10\)\( T^{6} + \)\(42\!\cdots\!36\)\( T^{7} + \)\(15\!\cdots\!44\)\( T^{8} + \)\(42\!\cdots\!36\)\( p^{7} T^{9} - \)\(14\!\cdots\!10\)\( p^{14} T^{10} - \)\(59\!\cdots\!56\)\( p^{21} T^{11} + 26557457139118316761 p^{28} T^{12} + 95298488634120 p^{35} T^{13} + 1744906414 p^{42} T^{14} - 131748 p^{49} T^{15} + p^{56} T^{16} \)
29 \( ( 1 + 34056 T + 37434723340 T^{2} - 965899818999528 T^{3} + \)\(63\!\cdots\!58\)\( T^{4} - 965899818999528 p^{7} T^{5} + 37434723340 p^{14} T^{6} + 34056 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
31 \( 1 + 401212 T + 20995911038 T^{2} - 7710914411317432 T^{3} + \)\(63\!\cdots\!53\)\( T^{4} + \)\(41\!\cdots\!68\)\( T^{5} + \)\(19\!\cdots\!38\)\( T^{6} + \)\(11\!\cdots\!88\)\( T^{7} + \)\(99\!\cdots\!68\)\( T^{8} + \)\(11\!\cdots\!88\)\( p^{7} T^{9} + \)\(19\!\cdots\!38\)\( p^{14} T^{10} + \)\(41\!\cdots\!68\)\( p^{21} T^{11} + \)\(63\!\cdots\!53\)\( p^{28} T^{12} - 7710914411317432 p^{35} T^{13} + 20995911038 p^{42} T^{14} + 401212 p^{49} T^{15} + p^{56} T^{16} \)
37 \( 1 - 5396 T - 363098326522 T^{2} + 1692295529079608 T^{3} + \)\(80\!\cdots\!33\)\( T^{4} - \)\(28\!\cdots\!72\)\( T^{5} - \)\(11\!\cdots\!30\)\( T^{6} + \)\(10\!\cdots\!56\)\( T^{7} + \)\(13\!\cdots\!04\)\( T^{8} + \)\(10\!\cdots\!56\)\( p^{7} T^{9} - \)\(11\!\cdots\!30\)\( p^{14} T^{10} - \)\(28\!\cdots\!72\)\( p^{21} T^{11} + \)\(80\!\cdots\!33\)\( p^{28} T^{12} + 1692295529079608 p^{35} T^{13} - 363098326522 p^{42} T^{14} - 5396 p^{49} T^{15} + p^{56} T^{16} \)
41 \( ( 1 + 410424 T + 514131659548 T^{2} + 263929507132312392 T^{3} + \)\(12\!\cdots\!54\)\( T^{4} + 263929507132312392 p^{7} T^{5} + 514131659548 p^{14} T^{6} + 410424 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
43 \( ( 1 - 46544 T + 620213285356 T^{2} - 12386906008354640 T^{3} + \)\(22\!\cdots\!42\)\( T^{4} - 12386906008354640 p^{7} T^{5} + 620213285356 p^{14} T^{6} - 46544 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
47 \( 1 - 1470084 T - 61407153218 T^{2} + 676586115609875016 T^{3} + \)\(33\!\cdots\!21\)\( T^{4} - \)\(36\!\cdots\!44\)\( T^{5} - \)\(22\!\cdots\!18\)\( T^{6} + \)\(49\!\cdots\!56\)\( T^{7} + \)\(16\!\cdots\!52\)\( T^{8} + \)\(49\!\cdots\!56\)\( p^{7} T^{9} - \)\(22\!\cdots\!18\)\( p^{14} T^{10} - \)\(36\!\cdots\!44\)\( p^{21} T^{11} + \)\(33\!\cdots\!21\)\( p^{28} T^{12} + 676586115609875016 p^{35} T^{13} - 61407153218 p^{42} T^{14} - 1470084 p^{49} T^{15} + p^{56} T^{16} \)
53 \( 1 + 642372 T - 2597575978538 T^{2} - 2359978517441309784 T^{3} + \)\(29\!\cdots\!33\)\( T^{4} + \)\(28\!\cdots\!24\)\( T^{5} - \)\(30\!\cdots\!50\)\( T^{6} - \)\(12\!\cdots\!88\)\( T^{7} + \)\(40\!\cdots\!84\)\( T^{8} - \)\(12\!\cdots\!88\)\( p^{7} T^{9} - \)\(30\!\cdots\!50\)\( p^{14} T^{10} + \)\(28\!\cdots\!24\)\( p^{21} T^{11} + \)\(29\!\cdots\!33\)\( p^{28} T^{12} - 2359978517441309784 p^{35} T^{13} - 2597575978538 p^{42} T^{14} + 642372 p^{49} T^{15} + p^{56} T^{16} \)
59 \( 1 - 752220 T - 3986199031874 T^{2} - 1265706973401854760 T^{3} + \)\(80\!\cdots\!61\)\( T^{4} + \)\(10\!\cdots\!20\)\( T^{5} + \)\(13\!\cdots\!18\)\( T^{6} - \)\(21\!\cdots\!40\)\( T^{7} - \)\(10\!\cdots\!32\)\( T^{8} - \)\(21\!\cdots\!40\)\( p^{7} T^{9} + \)\(13\!\cdots\!18\)\( p^{14} T^{10} + \)\(10\!\cdots\!20\)\( p^{21} T^{11} + \)\(80\!\cdots\!61\)\( p^{28} T^{12} - 1265706973401854760 p^{35} T^{13} - 3986199031874 p^{42} T^{14} - 752220 p^{49} T^{15} + p^{56} T^{16} \)
61 \( 1 + 1325772 T - 2658227552762 T^{2} + 8845336598195007288 T^{3} + \)\(19\!\cdots\!13\)\( T^{4} - \)\(17\!\cdots\!12\)\( T^{5} + \)\(85\!\cdots\!78\)\( T^{6} + \)\(13\!\cdots\!68\)\( T^{7} - \)\(18\!\cdots\!92\)\( T^{8} + \)\(13\!\cdots\!68\)\( p^{7} T^{9} + \)\(85\!\cdots\!78\)\( p^{14} T^{10} - \)\(17\!\cdots\!12\)\( p^{21} T^{11} + \)\(19\!\cdots\!13\)\( p^{28} T^{12} + 8845336598195007288 p^{35} T^{13} - 2658227552762 p^{42} T^{14} + 1325772 p^{49} T^{15} + p^{56} T^{16} \)
67 \( 1 - 290916 T - 10943334257858 T^{2} - 8785742150796028056 T^{3} + \)\(62\!\cdots\!41\)\( T^{4} + \)\(82\!\cdots\!44\)\( T^{5} + \)\(15\!\cdots\!02\)\( T^{6} - \)\(38\!\cdots\!96\)\( T^{7} - \)\(21\!\cdots\!88\)\( T^{8} - \)\(38\!\cdots\!96\)\( p^{7} T^{9} + \)\(15\!\cdots\!02\)\( p^{14} T^{10} + \)\(82\!\cdots\!44\)\( p^{21} T^{11} + \)\(62\!\cdots\!41\)\( p^{28} T^{12} - 8785742150796028056 p^{35} T^{13} - 10943334257858 p^{42} T^{14} - 290916 p^{49} T^{15} + p^{56} T^{16} \)
71 \( ( 1 + 3377760 T + 21455628109916 T^{2} + 39866994142106473440 T^{3} + \)\(20\!\cdots\!26\)\( T^{4} + 39866994142106473440 p^{7} T^{5} + 21455628109916 p^{14} T^{6} + 3377760 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
73 \( 1 + 6706588 T - 4081288956538 T^{2} - 75839108854686445576 T^{3} + \)\(20\!\cdots\!73\)\( T^{4} + \)\(78\!\cdots\!56\)\( T^{5} - \)\(36\!\cdots\!10\)\( T^{6} + \)\(16\!\cdots\!88\)\( T^{7} + \)\(80\!\cdots\!84\)\( T^{8} + \)\(16\!\cdots\!88\)\( p^{7} T^{9} - \)\(36\!\cdots\!10\)\( p^{14} T^{10} + \)\(78\!\cdots\!56\)\( p^{21} T^{11} + \)\(20\!\cdots\!73\)\( p^{28} T^{12} - 75839108854686445576 p^{35} T^{13} - 4081288956538 p^{42} T^{14} + 6706588 p^{49} T^{15} + p^{56} T^{16} \)
79 \( 1 + 3946244 T - 34598478524562 T^{2} + 37240845779266596472 T^{3} + \)\(11\!\cdots\!45\)\( T^{4} - \)\(24\!\cdots\!12\)\( T^{5} - \)\(13\!\cdots\!86\)\( T^{6} + \)\(27\!\cdots\!48\)\( T^{7} + \)\(56\!\cdots\!44\)\( T^{8} + \)\(27\!\cdots\!48\)\( p^{7} T^{9} - \)\(13\!\cdots\!86\)\( p^{14} T^{10} - \)\(24\!\cdots\!12\)\( p^{21} T^{11} + \)\(11\!\cdots\!45\)\( p^{28} T^{12} + 37240845779266596472 p^{35} T^{13} - 34598478524562 p^{42} T^{14} + 3946244 p^{49} T^{15} + p^{56} T^{16} \)
83 \( ( 1 + 9542064 T + 123192866313548 T^{2} + \)\(78\!\cdots\!08\)\( T^{3} + \)\(52\!\cdots\!18\)\( T^{4} + \)\(78\!\cdots\!08\)\( p^{7} T^{5} + 123192866313548 p^{14} T^{6} + 9542064 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
89 \( 1 - 16165212 T + 27735348124934 T^{2} + \)\(31\!\cdots\!60\)\( T^{3} + \)\(50\!\cdots\!09\)\( T^{4} - \)\(34\!\cdots\!96\)\( T^{5} - \)\(22\!\cdots\!10\)\( T^{6} - \)\(27\!\cdots\!28\)\( T^{7} + \)\(22\!\cdots\!72\)\( T^{8} - \)\(27\!\cdots\!28\)\( p^{7} T^{9} - \)\(22\!\cdots\!10\)\( p^{14} T^{10} - \)\(34\!\cdots\!96\)\( p^{21} T^{11} + \)\(50\!\cdots\!09\)\( p^{28} T^{12} + \)\(31\!\cdots\!60\)\( p^{35} T^{13} + 27735348124934 p^{42} T^{14} - 16165212 p^{49} T^{15} + p^{56} T^{16} \)
97 \( ( 1 - 1533112 T + 125450995201724 T^{2} - \)\(51\!\cdots\!40\)\( T^{3} + \)\(11\!\cdots\!22\)\( T^{4} - \)\(51\!\cdots\!40\)\( p^{7} T^{5} + 125450995201724 p^{14} T^{6} - 1533112 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.72621728308962029092777945320, −5.15724005852326471107859818374, −5.03665198918309692411346820485, −5.01474640602960020721431775999, −4.93501424688376654475193128781, −4.61528469963346273202425314801, −4.42789434996066925747451667044, −4.27462289322728508279575309890, −3.80161941487494090387868822406, −3.61473888892662798676808791704, −3.38615012279172161183386332492, −3.13049689857365583796264799284, −3.03458279700566408320190533108, −2.80296074170424010546810510731, −2.78787933978682615178016483590, −2.31504757861725879384692752636, −2.09469420672859961714545260655, −1.78338488859347101146990309885, −1.59247898814048467020197075853, −1.48182801540446205378018130177, −1.21392527784942589661141775267, −1.15080405365266326477142874873, −0.55440139509748247294022404484, −0.47131400495982704093924976253, −0.23285641499744925530502513372, 0.23285641499744925530502513372, 0.47131400495982704093924976253, 0.55440139509748247294022404484, 1.15080405365266326477142874873, 1.21392527784942589661141775267, 1.48182801540446205378018130177, 1.59247898814048467020197075853, 1.78338488859347101146990309885, 2.09469420672859961714545260655, 2.31504757861725879384692752636, 2.78787933978682615178016483590, 2.80296074170424010546810510731, 3.03458279700566408320190533108, 3.13049689857365583796264799284, 3.38615012279172161183386332492, 3.61473888892662798676808791704, 3.80161941487494090387868822406, 4.27462289322728508279575309890, 4.42789434996066925747451667044, 4.61528469963346273202425314801, 4.93501424688376654475193128781, 5.01474640602960020721431775999, 5.03665198918309692411346820485, 5.15724005852326471107859818374, 5.72621728308962029092777945320

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.