L(s) = 1 | − 2·2-s + 3·4-s + 2·8-s − 9-s + 2·11-s − 3·16-s + 2·18-s − 4·22-s − 12·23-s − 14·25-s + 2·29-s + 12·32-s − 3·36-s − 20·37-s + 14·43-s + 6·44-s + 24·46-s + 28·50-s + 48·53-s − 4·58-s − 2·64-s − 4·67-s − 16·71-s − 2·72-s + 40·74-s − 24·79-s + 15·81-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.707·8-s − 1/3·9-s + 0.603·11-s − 3/4·16-s + 0.471·18-s − 0.852·22-s − 2.50·23-s − 2.79·25-s + 0.371·29-s + 2.12·32-s − 1/2·36-s − 3.28·37-s + 2.13·43-s + 0.904·44-s + 3.53·46-s + 3.95·50-s + 6.59·53-s − 0.525·58-s − 1/4·64-s − 0.488·67-s − 1.89·71-s − 0.235·72-s + 4.64·74-s − 2.70·79-s + 5/3·81-s + ⋯ |
Λ(s)=(=((716⋅138)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((716⋅138)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.328902623 |
L(21) |
≈ |
1.328902623 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+pT4+p4T8 |
good | 2 | (1+T−3T3−5T4−3pT5+p3T7+p4T8)2 |
| 3 | 1+T2−14T4−pT6+5p3T8−p3T10−14p4T12+p6T14+p8T16 |
| 5 | (1+7T2+59T4+7p2T6+p4T8)2 |
| 11 | (1−T+8T2+29T3−83T4+29pT5+8p2T6−p3T7+p4T8)2 |
| 17 | 1−16T2+251T4+9168T6−157480T8+9168p2T10+251p4T12−16p6T14+p8T16 |
| 19 | 1−63T2+2258T4−62307T6+1364391T8−62307p2T10+2258p4T12−63p6T14+p8T16 |
| 23 | (1+6T−6T2−24T3+407T4−24pT5−6p2T6+6p3T7+p4T8)2 |
| 29 | (1−T−54T2+3T3+2155T4+3pT5−54p2T6−p3T7+p4T8)2 |
| 31 | (1+72T2+2581T4+72p2T6+p4T8)2 |
| 37 | (1+10T+14T2+120T3+2327T4+120pT5+14p2T6+10p3T7+p4T8)2 |
| 41 | 1−8T2−2846T4+3616T6+5534755T8+3616p2T10−2846p4T12−8p6T14+p8T16 |
| 43 | (1−7T+32T2+483T3−3667T4+483pT5+32p2T6−7p3T7+p4T8)2 |
| 47 | (1+32T2−1059T4+32p2T6+p4T8)2 |
| 53 | (1−12T+129T2−12pT3+p2T4)4 |
| 59 | 1−184T2+18755T4−1497576T6+98070104T8−1497576p2T10+18755p4T12−184p6T14+p8T16 |
| 61 | 1−192T2+20258T4−1759488T6+124742451T8−1759488p2T10+20258p4T12−192p6T14+p8T16 |
| 67 | (1+T−66T2+pT3+p2T4)4 |
| 71 | (1+4T−55T2+4pT3+p2T4)4 |
| 73 | (1+240T2+25006T4+240p2T6+p4T8)2 |
| 79 | (1+6T+154T2+6pT3+p2T4)4 |
| 83 | (1+280T2+33053T4+280p2T6+p4T8)2 |
| 89 | 1−239T2+27262T4−3350063T6+376362199T8−3350063p2T10+27262p4T12−239p6T14+p8T16 |
| 97 | 1−141T2+74T4−139449T6+116727639T8−139449p2T10+74p4T12−141p6T14+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.56728148578927855568062542163, −4.43859017682249900036757608598, −4.31366968624434947174578385894, −4.07281619270835394406863968169, −4.02865999138294273477824972901, −3.89277214277907347779548060582, −3.88842867203087388304476290008, −3.68960547837397041636009258577, −3.43497354338087349875385977757, −3.41924764994475015402629261393, −3.25949850134240769253431019742, −3.03620462983589682119790021823, −2.63077672105226735147720685904, −2.42441246894867687522291625691, −2.37829516638545847841447354908, −2.34319591011078898335992378749, −2.27767983567120718258852681783, −2.05412434316914290697350386237, −1.56284211725174995451881222743, −1.55673566926245904266820283336, −1.42916608395552063693088818392, −1.29433465208163791353622359503, −0.950068680988019740981576199563, −0.60362787116950152001889747997, −0.24180487227083459192103064091,
0.24180487227083459192103064091, 0.60362787116950152001889747997, 0.950068680988019740981576199563, 1.29433465208163791353622359503, 1.42916608395552063693088818392, 1.55673566926245904266820283336, 1.56284211725174995451881222743, 2.05412434316914290697350386237, 2.27767983567120718258852681783, 2.34319591011078898335992378749, 2.37829516638545847841447354908, 2.42441246894867687522291625691, 2.63077672105226735147720685904, 3.03620462983589682119790021823, 3.25949850134240769253431019742, 3.41924764994475015402629261393, 3.43497354338087349875385977757, 3.68960547837397041636009258577, 3.88842867203087388304476290008, 3.89277214277907347779548060582, 4.02865999138294273477824972901, 4.07281619270835394406863968169, 4.31366968624434947174578385894, 4.43859017682249900036757608598, 4.56728148578927855568062542163
Plot not available for L-functions of degree greater than 10.