Properties

Label 16-546e8-1.1-c1e8-0-16
Degree $16$
Conductor $7.898\times 10^{21}$
Sign $1$
Analytic cond. $130544.$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 36·4-s + 120·8-s + 330·16-s + 16·25-s + 792·32-s + 64·43-s − 4·49-s + 128·50-s + 1.71e3·64-s − 32·71-s − 48·79-s + 10·81-s + 512·86-s − 32·98-s + 576·100-s − 88·121-s + 127-s + 3.43e3·128-s + 131-s + 137-s + 139-s − 256·142-s + 149-s + 151-s + 157-s − 384·158-s + ⋯
L(s)  = 1  + 5.65·2-s + 18·4-s + 42.4·8-s + 82.5·16-s + 16/5·25-s + 140.·32-s + 9.75·43-s − 4/7·49-s + 18.1·50-s + 214.5·64-s − 3.79·71-s − 5.40·79-s + 10/9·81-s + 55.2·86-s − 3.23·98-s + 57.5·100-s − 8·121-s + 0.0887·127-s + 303.·128-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 21.4·142-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 30.5·158-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 7^{8} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(130544.\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{546} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{8} \cdot 7^{8} \cdot 13^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(418.1499070\)
\(L(\frac12)\) \(\approx\) \(418.1499070\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - T )^{8} \)
3 \( 1 - 10 T^{4} + p^{4} T^{8} \)
7 \( 1 + 4 T^{2} - 10 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
13 \( 1 + 310 T^{4} + p^{4} T^{8} \)
good5 \( ( 1 - 8 T^{2} + 38 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
11 \( ( 1 + p T^{2} )^{8} \)
17 \( ( 1 - 12 T^{2} + 166 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
19 \( ( 1 + 24 T^{2} + 838 T^{4} + 24 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
23 \( ( 1 - 28 T^{2} + 246 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 - 84 T^{2} + 3334 T^{4} - 84 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 + 84 T^{2} + 3574 T^{4} + 84 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 - 116 T^{2} + 5990 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
41 \( ( 1 + 52 T^{2} + 3926 T^{4} + 52 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
43 \( ( 1 - 8 T + p T^{2} )^{8} \)
47 \( ( 1 - 108 T^{2} + 6886 T^{4} - 108 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 148 T^{2} + 10086 T^{4} - 148 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - 216 T^{2} + 18598 T^{4} - 216 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 - 192 T^{2} + 16630 T^{4} - 192 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( ( 1 - 92 T^{2} + 3926 T^{4} - 92 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
71 \( ( 1 + 8 T + 46 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{4} \)
73 \( ( 1 + 124 T^{2} + 9014 T^{4} + 124 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + 12 T + 166 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{4} \)
83 \( ( 1 - 152 T^{2} + 18182 T^{4} - 152 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 - 188 T^{2} + 19190 T^{4} - 188 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
97 \( ( 1 + 172 T^{2} + 26102 T^{4} + 172 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.58696474229942634945946628329, −4.45865238423089957367609717624, −4.41763164738188979053493111006, −4.26993994497284867154739850293, −4.24145408803672970481761681498, −4.18957740480635236303461343863, −3.99643544585557338642938649104, −3.95464164930227558061773156770, −3.83190489830823968882272076281, −3.32161872110317103064426462375, −3.31159540622794470134586252896, −3.25120527139660967557555024280, −2.98843241552799605161279797847, −2.82438440641602750785963306709, −2.80658277856213348852764073029, −2.80302607631594255486200183643, −2.39596921077032745336579671841, −2.29242286878425419671947571755, −2.29183839840830192334422019742, −2.19803920519537568686586169551, −1.54778598981722576761583854287, −1.39773180230670617994151553922, −1.26678522265415791953678982884, −1.11320497805566594274401066309, −0.76832849162960674276123471425, 0.76832849162960674276123471425, 1.11320497805566594274401066309, 1.26678522265415791953678982884, 1.39773180230670617994151553922, 1.54778598981722576761583854287, 2.19803920519537568686586169551, 2.29183839840830192334422019742, 2.29242286878425419671947571755, 2.39596921077032745336579671841, 2.80302607631594255486200183643, 2.80658277856213348852764073029, 2.82438440641602750785963306709, 2.98843241552799605161279797847, 3.25120527139660967557555024280, 3.31159540622794470134586252896, 3.32161872110317103064426462375, 3.83190489830823968882272076281, 3.95464164930227558061773156770, 3.99643544585557338642938649104, 4.18957740480635236303461343863, 4.24145408803672970481761681498, 4.26993994497284867154739850293, 4.41763164738188979053493111006, 4.45865238423089957367609717624, 4.58696474229942634945946628329

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.