Properties

Label 16-440e8-1.1-c1e8-0-5
Degree $16$
Conductor $1.405\times 10^{21}$
Sign $1$
Analytic cond. $23218.7$
Root an. cond. $1.87441$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24·9-s + 3·16-s − 20·25-s − 32·59-s + 324·81-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 72·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 480·225-s + 227-s + ⋯
L(s)  = 1  + 8·9-s + 3/4·16-s − 4·25-s − 4.16·59-s + 36·81-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 6·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s − 32·225-s + 0.0663·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{24} \cdot 5^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(23218.7\)
Root analytic conductor: \(1.87441\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{24} \cdot 5^{8} \cdot 11^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(11.61610348\)
\(L(\frac12)\) \(\approx\) \(11.61610348\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 3 T^{4} + p^{4} T^{8} \)
5 \( ( 1 + p T^{2} )^{4} \)
11 \( ( 1 - p T^{2} )^{4} \)
good3 \( ( 1 - p T^{2} )^{8} \)
7 \( ( 1 - 78 T^{4} + p^{4} T^{8} )^{2} \)
13 \( ( 1 + 162 T^{4} + p^{4} T^{8} )^{2} \)
17 \( ( 1 + 402 T^{4} + p^{4} T^{8} )^{2} \)
19 \( ( 1 - p T^{2} )^{8} \)
23 \( ( 1 + p T^{2} )^{8} \)
29 \( ( 1 + p T^{2} )^{8} \)
31 \( ( 1 + 18 T^{2} + p^{2} T^{4} )^{4} \)
37 \( ( 1 + p T^{2} )^{8} \)
41 \( ( 1 - p T^{2} )^{8} \)
43 \( ( 1 + 3522 T^{4} + p^{4} T^{8} )^{2} \)
47 \( ( 1 + p T^{2} )^{8} \)
53 \( ( 1 + p T^{2} )^{8} \)
59 \( ( 1 + 4 T + p T^{2} )^{8} \)
61 \( ( 1 + p T^{2} )^{8} \)
67 \( ( 1 - p T^{2} )^{8} \)
71 \( ( 1 - 8 T + p T^{2} )^{4}( 1 + 8 T + p T^{2} )^{4} \)
73 \( ( 1 - 10638 T^{4} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + p T^{2} )^{8} \)
83 \( ( 1 + 13602 T^{4} + p^{4} T^{8} )^{2} \)
89 \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{4} \)
97 \( ( 1 - p T^{2} )^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.75878713840564443509196778712, −4.63986528109313714569756561661, −4.57323542968418820370244060559, −4.56854975919748306827623734219, −4.37235030950362240854056711885, −4.02597956323174448780330672281, −3.94723977293757253136950591216, −3.93284646746835353349176796951, −3.91418779930792673463398559075, −3.88827883951702434038043298902, −3.68880475980048710200765409470, −3.21652829301743973662760598595, −3.20377256278119633203474158549, −3.00352123287499253346728047560, −2.93488902559951309423605711162, −2.25872236264795694304878807226, −2.15156041156792855193469903162, −2.00221807795488904148558950136, −1.92334628374516996205980650557, −1.76684075556930808688493665619, −1.51273901426729815649090301606, −1.37218370888045847559374843920, −1.34942630710739335362661198599, −0.855905429141141288064684164211, −0.60588845843525547709351263525, 0.60588845843525547709351263525, 0.855905429141141288064684164211, 1.34942630710739335362661198599, 1.37218370888045847559374843920, 1.51273901426729815649090301606, 1.76684075556930808688493665619, 1.92334628374516996205980650557, 2.00221807795488904148558950136, 2.15156041156792855193469903162, 2.25872236264795694304878807226, 2.93488902559951309423605711162, 3.00352123287499253346728047560, 3.20377256278119633203474158549, 3.21652829301743973662760598595, 3.68880475980048710200765409470, 3.88827883951702434038043298902, 3.91418779930792673463398559075, 3.93284646746835353349176796951, 3.94723977293757253136950591216, 4.02597956323174448780330672281, 4.37235030950362240854056711885, 4.56854975919748306827623734219, 4.57323542968418820370244060559, 4.63986528109313714569756561661, 4.75878713840564443509196778712

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.