Properties

Label 16-42e16-1.1-c2e8-0-8
Degree $16$
Conductor $9.375\times 10^{25}$
Sign $1$
Analytic cond. $2.84884\times 10^{13}$
Root an. cond. $6.93293$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 48·17-s + 96·19-s − 8·23-s − 68·25-s − 80·29-s − 48·31-s − 64·37-s − 112·43-s − 264·47-s − 72·53-s + 168·59-s + 144·61-s + 32·67-s − 224·71-s − 336·73-s + 216·79-s + 96·89-s + 24·101-s + 96·103-s + 328·107-s − 8·109-s − 512·113-s + 360·121-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  + 2.82·17-s + 5.05·19-s − 0.347·23-s − 2.71·25-s − 2.75·29-s − 1.54·31-s − 1.72·37-s − 2.60·43-s − 5.61·47-s − 1.35·53-s + 2.84·59-s + 2.36·61-s + 0.477·67-s − 3.15·71-s − 4.60·73-s + 2.73·79-s + 1.07·89-s + 0.237·101-s + 0.932·103-s + 3.06·107-s − 0.0733·109-s − 4.53·113-s + 2.97·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+1)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 3^{16} \cdot 7^{16}\)
Sign: $1$
Analytic conductor: \(2.84884\times 10^{13}\)
Root analytic conductor: \(6.93293\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1764} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 3^{16} \cdot 7^{16} ,\ ( \ : [1]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(4.825392217\)
\(L(\frac12)\) \(\approx\) \(4.825392217\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 68 T^{2} + 492 p T^{4} + 1032 T^{5} + 62344 T^{6} + 51936 T^{7} + 1407071 T^{8} + 51936 p^{2} T^{9} + 62344 p^{4} T^{10} + 1032 p^{6} T^{11} + 492 p^{9} T^{12} + 68 p^{12} T^{14} + p^{16} T^{16} \)
11 \( 1 - 360 T^{2} + 96 T^{3} + 68470 T^{4} - 23088 T^{5} - 11462976 T^{6} + 1247520 T^{7} + 1624765635 T^{8} + 1247520 p^{2} T^{9} - 11462976 p^{4} T^{10} - 23088 p^{6} T^{11} + 68470 p^{8} T^{12} + 96 p^{10} T^{13} - 360 p^{12} T^{14} + p^{16} T^{16} \)
13 \( 1 - 640 T^{2} + 201024 T^{4} - 3606656 p T^{6} + 8914586690 T^{8} - 3606656 p^{5} T^{10} + 201024 p^{8} T^{12} - 640 p^{12} T^{14} + p^{16} T^{16} \)
17 \( 1 - 48 T + 1924 T^{2} - 192 p^{2} T^{3} + 1429948 T^{4} - 109080 p^{2} T^{5} + 643753096 T^{6} - 11956044720 T^{7} + 209982732223 T^{8} - 11956044720 p^{2} T^{9} + 643753096 p^{4} T^{10} - 109080 p^{8} T^{11} + 1429948 p^{8} T^{12} - 192 p^{12} T^{13} + 1924 p^{12} T^{14} - 48 p^{14} T^{15} + p^{16} T^{16} \)
19 \( 1 - 96 T + 5484 T^{2} - 231552 T^{3} + 8024850 T^{4} - 237456576 T^{5} + 6114429648 T^{6} - 138708232608 T^{7} + 2791933387859 T^{8} - 138708232608 p^{2} T^{9} + 6114429648 p^{4} T^{10} - 237456576 p^{6} T^{11} + 8024850 p^{8} T^{12} - 231552 p^{10} T^{13} + 5484 p^{12} T^{14} - 96 p^{14} T^{15} + p^{16} T^{16} \)
23 \( 1 + 8 T - 1440 T^{2} + 6352 T^{3} + 1245734 T^{4} - 10123272 T^{5} - 656508800 T^{6} + 2853951224 T^{7} + 290531534499 T^{8} + 2853951224 p^{2} T^{9} - 656508800 p^{4} T^{10} - 10123272 p^{6} T^{11} + 1245734 p^{8} T^{12} + 6352 p^{10} T^{13} - 1440 p^{12} T^{14} + 8 p^{14} T^{15} + p^{16} T^{16} \)
29 \( ( 1 + 40 T + 1440 T^{2} + 35480 T^{3} + 1476410 T^{4} + 35480 p^{2} T^{5} + 1440 p^{4} T^{6} + 40 p^{6} T^{7} + p^{8} T^{8} )^{2} \)
31 \( 1 + 48 T + 1772 T^{2} + 48192 T^{3} + 547506 T^{4} - 1137264 T^{5} - 1177108784 T^{6} - 88094121936 T^{7} - 2921554099981 T^{8} - 88094121936 p^{2} T^{9} - 1177108784 p^{4} T^{10} - 1137264 p^{6} T^{11} + 547506 p^{8} T^{12} + 48192 p^{10} T^{13} + 1772 p^{12} T^{14} + 48 p^{14} T^{15} + p^{16} T^{16} \)
37 \( 1 + 64 T + 2112 T^{2} + 59648 T^{3} + 644126 T^{4} - 32741760 T^{5} + 3363364864 T^{6} + 257607956800 T^{7} + 9871545282723 T^{8} + 257607956800 p^{2} T^{9} + 3363364864 p^{4} T^{10} - 32741760 p^{6} T^{11} + 644126 p^{8} T^{12} + 59648 p^{10} T^{13} + 2112 p^{12} T^{14} + 64 p^{14} T^{15} + p^{16} T^{16} \)
41 \( 1 - 3640 T^{2} + 14914392 T^{4} - 31945062104 T^{6} + 68419019701298 T^{8} - 31945062104 p^{4} T^{10} + 14914392 p^{8} T^{12} - 3640 p^{12} T^{14} + p^{16} T^{16} \)
43 \( ( 1 + 56 T + 84 p T^{2} + 107464 T^{3} + 6712358 T^{4} + 107464 p^{2} T^{5} + 84 p^{5} T^{6} + 56 p^{6} T^{7} + p^{8} T^{8} )^{2} \)
47 \( 1 + 264 T + 37940 T^{2} + 3882912 T^{3} + 314740146 T^{4} + 21398188008 T^{5} + 1268985966640 T^{6} + 67642086086760 T^{7} + 3306937422359987 T^{8} + 67642086086760 p^{2} T^{9} + 1268985966640 p^{4} T^{10} + 21398188008 p^{6} T^{11} + 314740146 p^{8} T^{12} + 3882912 p^{10} T^{13} + 37940 p^{12} T^{14} + 264 p^{14} T^{15} + p^{16} T^{16} \)
53 \( 1 + 72 T - 588 T^{2} + 178032 T^{3} + 16582090 T^{4} - 158994312 T^{5} + 33946611408 T^{6} + 1995258747768 T^{7} - 68021885502093 T^{8} + 1995258747768 p^{2} T^{9} + 33946611408 p^{4} T^{10} - 158994312 p^{6} T^{11} + 16582090 p^{8} T^{12} + 178032 p^{10} T^{13} - 588 p^{12} T^{14} + 72 p^{14} T^{15} + p^{16} T^{16} \)
59 \( 1 - 168 T + 16692 T^{2} - 1223712 T^{3} + 60611538 T^{4} - 1000432392 T^{5} - 152463705552 T^{6} + 20026557780792 T^{7} - 1451602798653997 T^{8} + 20026557780792 p^{2} T^{9} - 152463705552 p^{4} T^{10} - 1000432392 p^{6} T^{11} + 60611538 p^{8} T^{12} - 1223712 p^{10} T^{13} + 16692 p^{12} T^{14} - 168 p^{14} T^{15} + p^{16} T^{16} \)
61 \( 1 - 144 T + 18656 T^{2} - 1691136 T^{3} + 153918528 T^{4} - 12653747232 T^{5} + 923469869632 T^{6} - 63336115849200 T^{7} + 3836802319781471 T^{8} - 63336115849200 p^{2} T^{9} + 923469869632 p^{4} T^{10} - 12653747232 p^{6} T^{11} + 153918528 p^{8} T^{12} - 1691136 p^{10} T^{13} + 18656 p^{12} T^{14} - 144 p^{14} T^{15} + p^{16} T^{16} \)
67 \( 1 - 32 T - 10884 T^{2} - 48064 T^{3} + 70418666 T^{4} + 1497416352 T^{5} - 302846952464 T^{6} - 3770996900576 T^{7} + 1160434720244979 T^{8} - 3770996900576 p^{2} T^{9} - 302846952464 p^{4} T^{10} + 1497416352 p^{6} T^{11} + 70418666 p^{8} T^{12} - 48064 p^{10} T^{13} - 10884 p^{12} T^{14} - 32 p^{14} T^{15} + p^{16} T^{16} \)
71 \( ( 1 + 112 T + 13704 T^{2} + 1059392 T^{3} + 79617770 T^{4} + 1059392 p^{2} T^{5} + 13704 p^{4} T^{6} + 112 p^{6} T^{7} + p^{8} T^{8} )^{2} \)
73 \( 1 + 336 T + 66528 T^{2} + 9709056 T^{3} + 1185969600 T^{4} + 126302528832 T^{5} + 11936480262720 T^{6} + 1009238088017328 T^{7} + 77237278241369279 T^{8} + 1009238088017328 p^{2} T^{9} + 11936480262720 p^{4} T^{10} + 126302528832 p^{6} T^{11} + 1185969600 p^{8} T^{12} + 9709056 p^{10} T^{13} + 66528 p^{12} T^{14} + 336 p^{14} T^{15} + p^{16} T^{16} \)
79 \( 1 - 216 T + 9252 T^{2} + 133680 T^{3} + 130134922 T^{4} - 180187224 p T^{5} - 44437168368 T^{6} - 18348496114728 T^{7} + 7297444984354515 T^{8} - 18348496114728 p^{2} T^{9} - 44437168368 p^{4} T^{10} - 180187224 p^{7} T^{11} + 130134922 p^{8} T^{12} + 133680 p^{10} T^{13} + 9252 p^{12} T^{14} - 216 p^{14} T^{15} + p^{16} T^{16} \)
83 \( 1 - 35400 T^{2} + 603816348 T^{4} - 6617387785848 T^{6} + 52566528325929350 T^{8} - 6617387785848 p^{4} T^{10} + 603816348 p^{8} T^{12} - 35400 p^{12} T^{14} + p^{16} T^{16} \)
89 \( 1 - 96 T + 15492 T^{2} - 1192320 T^{3} + 93673308 T^{4} + 4376375256 T^{5} - 630708975480 T^{6} + 151171483500672 T^{7} - 13302455367766657 T^{8} + 151171483500672 p^{2} T^{9} - 630708975480 p^{4} T^{10} + 4376375256 p^{6} T^{11} + 93673308 p^{8} T^{12} - 1192320 p^{10} T^{13} + 15492 p^{12} T^{14} - 96 p^{14} T^{15} + p^{16} T^{16} \)
97 \( 1 - 61632 T^{2} + 1744804416 T^{4} - 29860121715648 T^{6} + 339981119551810562 T^{8} - 29860121715648 p^{4} T^{10} + 1744804416 p^{8} T^{12} - 61632 p^{12} T^{14} + p^{16} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.59342739661026951130054385799, −3.50637123989116143978283086239, −3.48272968011168813388718192607, −3.33667051198006015170575622939, −3.28274256116156936556329216173, −3.23092761865294386225873804752, −3.01455734812194047423125194288, −2.91907021492625223860947896541, −2.77792752265059611471016308506, −2.73847166031172785980728405808, −2.33507072530499587367460280425, −2.07223597512537726171794720632, −2.06035506472599342981329837082, −1.96611724444540968159689209820, −1.76323793966743518882723060316, −1.57912237955459410205901264197, −1.52122248754058929721941656438, −1.44657742652865145528254605264, −1.42402163701523706300191007070, −1.11709169840348075149102879473, −0.839072205205657334634412721737, −0.75256839401589152096288609196, −0.34279091102680738577864565646, −0.30235334023172983043631950210, −0.19851495973999947666861870103, 0.19851495973999947666861870103, 0.30235334023172983043631950210, 0.34279091102680738577864565646, 0.75256839401589152096288609196, 0.839072205205657334634412721737, 1.11709169840348075149102879473, 1.42402163701523706300191007070, 1.44657742652865145528254605264, 1.52122248754058929721941656438, 1.57912237955459410205901264197, 1.76323793966743518882723060316, 1.96611724444540968159689209820, 2.06035506472599342981329837082, 2.07223597512537726171794720632, 2.33507072530499587367460280425, 2.73847166031172785980728405808, 2.77792752265059611471016308506, 2.91907021492625223860947896541, 3.01455734812194047423125194288, 3.23092761865294386225873804752, 3.28274256116156936556329216173, 3.33667051198006015170575622939, 3.48272968011168813388718192607, 3.50637123989116143978283086239, 3.59342739661026951130054385799

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.