Properties

Label 16-416e8-1.1-c1e8-0-2
Degree $16$
Conductor $8.969\times 10^{20}$
Sign $1$
Analytic cond. $14823.9$
Root an. cond. $1.82257$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 5·9-s + 2·13-s − 8·17-s − 14·25-s + 20·29-s + 8·37-s − 20·45-s + 5·49-s − 4·53-s + 12·61-s − 8·65-s − 84·73-s + 20·81-s + 32·85-s − 18·89-s − 2·97-s − 16·101-s − 24·109-s − 16·113-s + 10·117-s + 13·121-s + 80·125-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 1.78·5-s + 5/3·9-s + 0.554·13-s − 1.94·17-s − 2.79·25-s + 3.71·29-s + 1.31·37-s − 2.98·45-s + 5/7·49-s − 0.549·53-s + 1.53·61-s − 0.992·65-s − 9.83·73-s + 20/9·81-s + 3.47·85-s − 1.90·89-s − 0.203·97-s − 1.59·101-s − 2.29·109-s − 1.50·113-s + 0.924·117-s + 1.18·121-s + 7.15·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{40} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(14823.9\)
Root analytic conductor: \(1.82257\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{40} \cdot 13^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.9539210865\)
\(L(\frac12)\) \(\approx\) \(0.9539210865\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( ( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
good3 \( 1 - 5 T^{2} + 5 T^{4} - 10 T^{6} + 94 T^{8} - 10 p^{2} T^{10} + 5 p^{4} T^{12} - 5 p^{6} T^{14} + p^{8} T^{16} \)
5 \( ( 1 + T + 6 T^{2} + p T^{3} + p^{2} T^{4} )^{4} \)
7 \( 1 - 5 T^{2} - 75 T^{4} - 10 T^{6} + 6374 T^{8} - 10 p^{2} T^{10} - 75 p^{4} T^{12} - 5 p^{6} T^{14} + p^{8} T^{16} \)
11 \( 1 - 13 T^{2} + 93 T^{4} + 2158 T^{6} - 29314 T^{8} + 2158 p^{2} T^{10} + 93 p^{4} T^{12} - 13 p^{6} T^{14} + p^{8} T^{16} \)
17 \( ( 1 + 4 T - 5 T^{2} - 52 T^{3} - 120 T^{4} - 52 p T^{5} - 5 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
19 \( 1 + 3 T^{2} - 507 T^{4} - 618 T^{6} + 132686 T^{8} - 618 p^{2} T^{10} - 507 p^{4} T^{12} + 3 p^{6} T^{14} + p^{8} T^{16} \)
23 \( 1 - 29 T^{2} - 83 T^{4} + 3886 T^{6} + 129046 T^{8} + 3886 p^{2} T^{10} - 83 p^{4} T^{12} - 29 p^{6} T^{14} + p^{8} T^{16} \)
29 \( ( 1 - 5 T - 4 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{4} \)
31 \( ( 1 + 68 T^{2} + 2806 T^{4} + 68 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 - 4 T - 45 T^{2} + 52 T^{3} + 1760 T^{4} + 52 p T^{5} - 45 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
41 \( ( 1 - 21 T + 188 T^{2} - 21 p T^{3} + p^{2} T^{4} )^{2}( 1 + 21 T + 188 T^{2} + 21 p T^{3} + p^{2} T^{4} )^{2} \)
43 \( 1 - 101 T^{2} + 5181 T^{4} - 133522 T^{6} + 2919950 T^{8} - 133522 p^{2} T^{10} + 5181 p^{4} T^{12} - 101 p^{6} T^{14} + p^{8} T^{16} \)
47 \( ( 1 + 72 T^{2} + 2382 T^{4} + 72 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 + T + 102 T^{2} + p T^{3} + p^{2} T^{4} )^{4} \)
59 \( 1 - 21 T^{2} - 6627 T^{4} - 2226 T^{6} + 36304142 T^{8} - 2226 p^{2} T^{10} - 6627 p^{4} T^{12} - 21 p^{6} T^{14} + p^{8} T^{16} \)
61 \( ( 1 - 6 T - 27 T^{2} + 354 T^{3} - 1948 T^{4} + 354 p T^{5} - 27 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
67 \( 1 - 149 T^{2} + 8901 T^{4} - 643978 T^{6} + 57078590 T^{8} - 643978 p^{2} T^{10} + 8901 p^{4} T^{12} - 149 p^{6} T^{14} + p^{8} T^{16} \)
71 \( 1 - 205 T^{2} + 21645 T^{4} - 2111090 T^{6} + 178084694 T^{8} - 2111090 p^{2} T^{10} + 21645 p^{4} T^{12} - 205 p^{6} T^{14} + p^{8} T^{16} \)
73 \( ( 1 + 21 T + 218 T^{2} + 21 p T^{3} + p^{2} T^{4} )^{4} \)
79 \( ( 1 - 64 T^{2} + 10174 T^{4} - 64 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
83 \( ( 1 + 252 T^{2} + 28566 T^{4} + 252 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 + 9 T - 79 T^{2} - 162 T^{3} + 10470 T^{4} - 162 p T^{5} - 79 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
97 \( ( 1 + T - 87 T^{2} - 106 T^{3} - 1762 T^{4} - 106 p T^{5} - 87 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.70628281085547355696063768583, −4.69912647550065897630110722292, −4.63227318732739165860121632332, −4.55165130598770223806425384934, −4.39706115426976688268827237943, −4.21216447585704202026555726346, −4.13999949445329229275002042388, −4.10461914382757405090503890863, −3.84897654514970693305286304510, −3.65538940769026390032448938708, −3.50167979350840205087234374235, −3.41423376194738707303960877100, −3.27440240414119681047159960488, −2.80161728634387450010690245087, −2.76859461347779009020909261489, −2.60188210447576842164962080250, −2.51573433466867128932413780597, −2.40986973029628232472198183716, −1.88801661508749921013684767836, −1.78643903968965349693797247115, −1.42707239442534010509793832199, −1.37853139296822822563482489152, −1.26902293301586231921026772178, −0.54194731449038268215551442136, −0.27654549078756125280518451938, 0.27654549078756125280518451938, 0.54194731449038268215551442136, 1.26902293301586231921026772178, 1.37853139296822822563482489152, 1.42707239442534010509793832199, 1.78643903968965349693797247115, 1.88801661508749921013684767836, 2.40986973029628232472198183716, 2.51573433466867128932413780597, 2.60188210447576842164962080250, 2.76859461347779009020909261489, 2.80161728634387450010690245087, 3.27440240414119681047159960488, 3.41423376194738707303960877100, 3.50167979350840205087234374235, 3.65538940769026390032448938708, 3.84897654514970693305286304510, 4.10461914382757405090503890863, 4.13999949445329229275002042388, 4.21216447585704202026555726346, 4.39706115426976688268827237943, 4.55165130598770223806425384934, 4.63227318732739165860121632332, 4.69912647550065897630110722292, 4.70628281085547355696063768583

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.