Properties

Label 16-384e8-1.1-c9e8-0-0
Degree $16$
Conductor $4.728\times 10^{20}$
Sign $1$
Analytic cond. $2.34071\times 10^{18}$
Root an. cond. $14.0632$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.36e4·7-s − 2.62e4·9-s + 8.30e3·17-s − 4.61e6·23-s + 5.43e6·25-s − 7.49e6·31-s − 4.35e7·41-s + 4.93e7·47-s − 1.05e8·49-s + 3.57e8·63-s − 7.41e8·71-s − 1.50e9·73-s + 1.00e9·79-s + 4.30e8·81-s − 1.33e9·89-s − 9.04e8·97-s + 7.92e8·103-s − 8.61e9·113-s − 1.13e8·119-s + 6.88e9·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 2.17e8·153-s + ⋯
L(s)  = 1  − 2.14·7-s − 4/3·9-s + 0.0241·17-s − 3.43·23-s + 2.78·25-s − 1.45·31-s − 2.40·41-s + 1.47·47-s − 2.61·49-s + 2.86·63-s − 3.46·71-s − 6.21·73-s + 2.91·79-s + 10/9·81-s − 2.25·89-s − 1.03·97-s + 0.693·103-s − 4.96·113-s − 0.0517·119-s + 2.91·121-s − 0.0321·153-s + 7.37·161-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{56} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{56} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{56} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(2.34071\times 10^{18}\)
Root analytic conductor: \(14.0632\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{384} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{56} \cdot 3^{8} ,\ ( \ : [9/2]^{8} ),\ 1 )\)

Particular Values

\(L(5)\) \(\approx\) \(0.1595006235\)
\(L(\frac12)\) \(\approx\) \(0.1595006235\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 + p^{8} T^{2} )^{4} \)
good5 \( 1 - 5435048 T^{2} + 20893425650876 T^{4} - 2321812585418275992 p^{2} T^{6} + \)\(20\!\cdots\!54\)\( p^{4} T^{8} - 2321812585418275992 p^{20} T^{10} + 20893425650876 p^{36} T^{12} - 5435048 p^{54} T^{14} + p^{72} T^{16} \)
7 \( ( 1 + 6816 T + 17494692 p T^{2} + 11388268320 p^{2} T^{3} + 18913377869578 p^{3} T^{4} + 11388268320 p^{11} T^{5} + 17494692 p^{19} T^{6} + 6816 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
11 \( 1 - 6884938520 T^{2} + 2965172912109472948 p T^{4} - \)\(11\!\cdots\!16\)\( T^{6} + \)\(29\!\cdots\!70\)\( T^{8} - \)\(11\!\cdots\!16\)\( p^{18} T^{10} + 2965172912109472948 p^{37} T^{12} - 6884938520 p^{54} T^{14} + p^{72} T^{16} \)
13 \( 1 - 57037171240 T^{2} + \)\(14\!\cdots\!60\)\( T^{4} - \)\(23\!\cdots\!76\)\( T^{6} + \)\(28\!\cdots\!58\)\( T^{8} - \)\(23\!\cdots\!76\)\( p^{18} T^{10} + \)\(14\!\cdots\!60\)\( p^{36} T^{12} - 57037171240 p^{54} T^{14} + p^{72} T^{16} \)
17 \( ( 1 - 4152 T + 263140496604 T^{2} + 47861357636656632 T^{3} + \)\(31\!\cdots\!78\)\( T^{4} + 47861357636656632 p^{9} T^{5} + 263140496604 p^{18} T^{6} - 4152 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
19 \( 1 - 741411893592 T^{2} + \)\(38\!\cdots\!28\)\( T^{4} - \)\(11\!\cdots\!28\)\( T^{6} + \)\(40\!\cdots\!42\)\( T^{8} - \)\(11\!\cdots\!28\)\( p^{18} T^{10} + \)\(38\!\cdots\!28\)\( p^{36} T^{12} - 741411893592 p^{54} T^{14} + p^{72} T^{16} \)
23 \( ( 1 + 2306304 T + 8281005731548 T^{2} + 12314633297082856704 T^{3} + \)\(23\!\cdots\!90\)\( T^{4} + 12314633297082856704 p^{9} T^{5} + 8281005731548 p^{18} T^{6} + 2306304 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
29 \( 1 + 10389690701976 T^{2} + \)\(14\!\cdots\!56\)\( p T^{4} - \)\(56\!\cdots\!80\)\( T^{6} + \)\(44\!\cdots\!38\)\( T^{8} - \)\(56\!\cdots\!80\)\( p^{18} T^{10} + \)\(14\!\cdots\!56\)\( p^{37} T^{12} + 10389690701976 p^{54} T^{14} + p^{72} T^{16} \)
31 \( ( 1 + 3749664 T + 100674806735580 T^{2} + \)\(27\!\cdots\!44\)\( T^{3} + \)\(39\!\cdots\!02\)\( T^{4} + \)\(27\!\cdots\!44\)\( p^{9} T^{5} + 100674806735580 p^{18} T^{6} + 3749664 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
37 \( 1 - 550539626288616 T^{2} + \)\(10\!\cdots\!92\)\( T^{4} - \)\(16\!\cdots\!12\)\( p T^{6} - \)\(15\!\cdots\!86\)\( T^{8} - \)\(16\!\cdots\!12\)\( p^{19} T^{10} + \)\(10\!\cdots\!92\)\( p^{36} T^{12} - 550539626288616 p^{54} T^{14} + p^{72} T^{16} \)
41 \( ( 1 + 21759448 T + 779819408639484 T^{2} + \)\(14\!\cdots\!80\)\( T^{3} + \)\(29\!\cdots\!06\)\( T^{4} + \)\(14\!\cdots\!80\)\( p^{9} T^{5} + 779819408639484 p^{18} T^{6} + 21759448 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
43 \( 1 - 2639304093984792 T^{2} + \)\(33\!\cdots\!04\)\( T^{4} - \)\(28\!\cdots\!00\)\( T^{6} + \)\(16\!\cdots\!50\)\( T^{8} - \)\(28\!\cdots\!00\)\( p^{18} T^{10} + \)\(33\!\cdots\!04\)\( p^{36} T^{12} - 2639304093984792 p^{54} T^{14} + p^{72} T^{16} \)
47 \( ( 1 - 24691008 T + 2410036675923004 T^{2} - \)\(20\!\cdots\!32\)\( T^{3} + \)\(28\!\cdots\!78\)\( T^{4} - \)\(20\!\cdots\!32\)\( p^{9} T^{5} + 2410036675923004 p^{18} T^{6} - 24691008 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
53 \( 1 - 2620853843021352 T^{2} + \)\(20\!\cdots\!76\)\( T^{4} - \)\(54\!\cdots\!84\)\( T^{6} + \)\(33\!\cdots\!86\)\( T^{8} - \)\(54\!\cdots\!84\)\( p^{18} T^{10} + \)\(20\!\cdots\!76\)\( p^{36} T^{12} - 2620853843021352 p^{54} T^{14} + p^{72} T^{16} \)
59 \( 1 - 47982788636552344 T^{2} + \)\(11\!\cdots\!84\)\( T^{4} - \)\(17\!\cdots\!76\)\( T^{6} + \)\(17\!\cdots\!90\)\( T^{8} - \)\(17\!\cdots\!76\)\( p^{18} T^{10} + \)\(11\!\cdots\!84\)\( p^{36} T^{12} - 47982788636552344 p^{54} T^{14} + p^{72} T^{16} \)
61 \( 1 - 86131957542763688 T^{2} + \)\(33\!\cdots\!56\)\( T^{4} - \)\(75\!\cdots\!08\)\( T^{6} + \)\(10\!\cdots\!54\)\( T^{8} - \)\(75\!\cdots\!08\)\( p^{18} T^{10} + \)\(33\!\cdots\!56\)\( p^{36} T^{12} - 86131957542763688 p^{54} T^{14} + p^{72} T^{16} \)
67 \( 1 - 43639592995907288 T^{2} + \)\(22\!\cdots\!64\)\( T^{4} - \)\(60\!\cdots\!60\)\( T^{6} + \)\(20\!\cdots\!90\)\( T^{8} - \)\(60\!\cdots\!60\)\( p^{18} T^{10} + \)\(22\!\cdots\!64\)\( p^{36} T^{12} - 43639592995907288 p^{54} T^{14} + p^{72} T^{16} \)
71 \( ( 1 + 370875648 T + 140809684178445724 T^{2} + \)\(25\!\cdots\!32\)\( T^{3} + \)\(65\!\cdots\!50\)\( T^{4} + \)\(25\!\cdots\!32\)\( p^{9} T^{5} + 140809684178445724 p^{18} T^{6} + 370875648 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
73 \( ( 1 + 753951720 T + 382588289020544764 T^{2} + \)\(13\!\cdots\!20\)\( T^{3} + \)\(37\!\cdots\!26\)\( T^{4} + \)\(13\!\cdots\!20\)\( p^{9} T^{5} + 382588289020544764 p^{18} T^{6} + 753951720 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
79 \( ( 1 - 504186720 T + 287669282447248284 T^{2} - \)\(88\!\cdots\!88\)\( T^{3} + \)\(41\!\cdots\!78\)\( T^{4} - \)\(88\!\cdots\!88\)\( p^{9} T^{5} + 287669282447248284 p^{18} T^{6} - 504186720 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
83 \( 1 - 941769227507077976 T^{2} + \)\(43\!\cdots\!56\)\( T^{4} - \)\(13\!\cdots\!36\)\( T^{6} + \)\(28\!\cdots\!46\)\( T^{8} - \)\(13\!\cdots\!36\)\( p^{18} T^{10} + \)\(43\!\cdots\!56\)\( p^{36} T^{12} - 941769227507077976 p^{54} T^{14} + p^{72} T^{16} \)
89 \( ( 1 + 668517224 T + 916953720151884348 T^{2} + \)\(59\!\cdots\!72\)\( T^{3} + \)\(41\!\cdots\!62\)\( T^{4} + \)\(59\!\cdots\!72\)\( p^{9} T^{5} + 916953720151884348 p^{18} T^{6} + 668517224 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
97 \( ( 1 + 452408968 T + 2361010511996232860 T^{2} + \)\(92\!\cdots\!04\)\( T^{3} + \)\(25\!\cdots\!82\)\( T^{4} + \)\(92\!\cdots\!04\)\( p^{9} T^{5} + 2361010511996232860 p^{18} T^{6} + 452408968 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.45575254095212519188365466745, −3.28024275217474971685397143220, −3.05666383082744309199179626362, −2.96798691907025031669734554047, −2.95101979610190266778370331430, −2.90586880792400405774988894879, −2.84590628906163553683020821598, −2.80930781000444961886047465498, −2.72314116443819701668315608989, −2.09683888611172886881250512250, −1.99251389552192638117603098122, −1.89298849501906818441232844471, −1.84755788523286563154487448434, −1.78707570640594067431803914283, −1.51013710833820625445684365554, −1.50891838598974429958691008274, −1.47443600822487002897145608814, −1.13410334799128374293977990323, −0.78464321964758404699970085552, −0.62169328938980522722383928096, −0.57948796004923128676837489042, −0.41667536918581748038528312373, −0.35436453757723016105357426356, −0.28033205758775022062158513425, −0.03196517027815853210652764449, 0.03196517027815853210652764449, 0.28033205758775022062158513425, 0.35436453757723016105357426356, 0.41667536918581748038528312373, 0.57948796004923128676837489042, 0.62169328938980522722383928096, 0.78464321964758404699970085552, 1.13410334799128374293977990323, 1.47443600822487002897145608814, 1.50891838598974429958691008274, 1.51013710833820625445684365554, 1.78707570640594067431803914283, 1.84755788523286563154487448434, 1.89298849501906818441232844471, 1.99251389552192638117603098122, 2.09683888611172886881250512250, 2.72314116443819701668315608989, 2.80930781000444961886047465498, 2.84590628906163553683020821598, 2.90586880792400405774988894879, 2.95101979610190266778370331430, 2.96798691907025031669734554047, 3.05666383082744309199179626362, 3.28024275217474971685397143220, 3.45575254095212519188365466745

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.