# Properties

 Label 16-378e8-1.1-c3e8-0-2 Degree $16$ Conductor $4.168\times 10^{20}$ Sign $1$ Analytic cond. $6.12157\times 10^{10}$ Root an. cond. $4.72257$ Motivic weight $3$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

# Origins of factors

## Dirichlet series

 L(s)  = 1 − 8·2-s + 24·4-s + 4·5-s + 25·7-s − 32·10-s + 56·11-s − 18·13-s − 200·14-s − 240·16-s − 118·17-s + 37·19-s + 96·20-s − 448·22-s + 200·23-s + 206·25-s + 144·26-s + 600·28-s − 524·29-s + 276·31-s + 768·32-s + 944·34-s + 100·35-s − 185·37-s − 296·38-s + 60·41-s − 1.55e3·43-s + 1.34e3·44-s + ⋯
 L(s)  = 1 − 2.82·2-s + 3·4-s + 0.357·5-s + 1.34·7-s − 1.01·10-s + 1.53·11-s − 0.384·13-s − 3.81·14-s − 3.75·16-s − 1.68·17-s + 0.446·19-s + 1.07·20-s − 4.34·22-s + 1.81·23-s + 1.64·25-s + 1.08·26-s + 4.04·28-s − 3.35·29-s + 1.59·31-s + 4.24·32-s + 4.76·34-s + 0.482·35-s − 0.821·37-s − 1.26·38-s + 0.228·41-s − 5.51·43-s + 4.60·44-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{24} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{24} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 Degree: $$16$$ Conductor: $$2^{8} \cdot 3^{24} \cdot 7^{8}$$ Sign: $1$ Analytic conductor: $$6.12157\times 10^{10}$$ Root analytic conductor: $$4.72257$$ Motivic weight: $$3$$ Rational: yes Arithmetic: yes Character: Trivial Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(16,\ 2^{8} \cdot 3^{24} \cdot 7^{8} ,\ ( \ : [3/2]^{8} ),\ 1 )$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$0.3197716156$$ $$L(\frac12)$$ $$\approx$$ $$0.3197716156$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$( 1 + p T + p^{2} T^{2} )^{4}$$
3 $$1$$
7 $$1 - 25 T + 892 T^{2} - 257 p^{2} T^{3} + 986 p^{3} T^{4} - 257 p^{5} T^{5} + 892 p^{6} T^{6} - 25 p^{9} T^{7} + p^{12} T^{8}$$
good5 $$1 - 4 T - 38 p T^{2} + 952 T^{3} + 3122 p T^{4} - 107736 T^{5} + 79504 p^{2} T^{6} + 4377188 T^{7} - 401592049 T^{8} + 4377188 p^{3} T^{9} + 79504 p^{8} T^{10} - 107736 p^{9} T^{11} + 3122 p^{13} T^{12} + 952 p^{15} T^{13} - 38 p^{19} T^{14} - 4 p^{21} T^{15} + p^{24} T^{16}$$
11 $$1 - 56 T - 1294 T^{2} + 27848 T^{3} + 4620514 T^{4} + 20370420 T^{5} - 7796509808 T^{6} + 51271167136 T^{7} + 4524706836959 T^{8} + 51271167136 p^{3} T^{9} - 7796509808 p^{6} T^{10} + 20370420 p^{9} T^{11} + 4620514 p^{12} T^{12} + 27848 p^{15} T^{13} - 1294 p^{18} T^{14} - 56 p^{21} T^{15} + p^{24} T^{16}$$
13 $$( 1 + 9 T + 6151 T^{2} + 57820 T^{3} + 18686898 T^{4} + 57820 p^{3} T^{5} + 6151 p^{6} T^{6} + 9 p^{9} T^{7} + p^{12} T^{8} )^{2}$$
17 $$1 + 118 T - 4258 T^{2} - 842176 T^{3} + 26902678 T^{4} + 4430920662 T^{5} - 73353446888 T^{6} - 10771697769914 T^{7} + 10410332361635 T^{8} - 10771697769914 p^{3} T^{9} - 73353446888 p^{6} T^{10} + 4430920662 p^{9} T^{11} + 26902678 p^{12} T^{12} - 842176 p^{15} T^{13} - 4258 p^{18} T^{14} + 118 p^{21} T^{15} + p^{24} T^{16}$$
19 $$1 - 37 T - 4167 T^{2} + 433714 T^{3} - 61048363 T^{4} + 1953920457 T^{5} + 99571342114 T^{6} - 22833789745645 T^{7} + 2910424159827918 T^{8} - 22833789745645 p^{3} T^{9} + 99571342114 p^{6} T^{10} + 1953920457 p^{9} T^{11} - 61048363 p^{12} T^{12} + 433714 p^{15} T^{13} - 4167 p^{18} T^{14} - 37 p^{21} T^{15} + p^{24} T^{16}$$
23 $$1 - 200 T + 19268 T^{2} - 4502992 T^{3} + 578747002 T^{4} - 39443031096 T^{5} + 8952169699408 T^{6} - 47138759811832 p T^{7} + 70993179469128755 T^{8} - 47138759811832 p^{4} T^{9} + 8952169699408 p^{6} T^{10} - 39443031096 p^{9} T^{11} + 578747002 p^{12} T^{12} - 4502992 p^{15} T^{13} + 19268 p^{18} T^{14} - 200 p^{21} T^{15} + p^{24} T^{16}$$
29 $$( 1 + 262 T + 70382 T^{2} + 7734354 T^{3} + 1506015426 T^{4} + 7734354 p^{3} T^{5} + 70382 p^{6} T^{6} + 262 p^{9} T^{7} + p^{12} T^{8} )^{2}$$
31 $$1 - 276 T + 25820 T^{2} - 10857088 T^{3} + 1976132059 T^{4} - 44637997712 T^{5} + 72146240415876 T^{6} - 15282614101089316 T^{7} + 940693478637184968 T^{8} - 15282614101089316 p^{3} T^{9} + 72146240415876 p^{6} T^{10} - 44637997712 p^{9} T^{11} + 1976132059 p^{12} T^{12} - 10857088 p^{15} T^{13} + 25820 p^{18} T^{14} - 276 p^{21} T^{15} + p^{24} T^{16}$$
37 $$1 + 5 p T - 28182 T^{2} - 19254761 T^{3} - 5339642509 T^{4} - 621423096180 T^{5} + 14603173107124 T^{6} + 54636230423573108 T^{7} + 21079140975815813460 T^{8} + 54636230423573108 p^{3} T^{9} + 14603173107124 p^{6} T^{10} - 621423096180 p^{9} T^{11} - 5339642509 p^{12} T^{12} - 19254761 p^{15} T^{13} - 28182 p^{18} T^{14} + 5 p^{22} T^{15} + p^{24} T^{16}$$
41 $$( 1 - 30 T - 53770 T^{2} - 10546866 T^{3} + 6199463634 T^{4} - 10546866 p^{3} T^{5} - 53770 p^{6} T^{6} - 30 p^{9} T^{7} + p^{12} T^{8} )^{2}$$
43 $$( 1 + 778 T + 455356 T^{2} + 180370816 T^{3} + 59455969525 T^{4} + 180370816 p^{3} T^{5} + 455356 p^{6} T^{6} + 778 p^{9} T^{7} + p^{12} T^{8} )^{2}$$
47 $$1 - 30 T - 233978 T^{2} + 7042728 T^{3} + 20874591478 T^{4} - 341085867174 T^{5} - 2913767666766488 T^{6} - 6045629293426602 T^{7} +$$$$44\!\cdots\!31$$$$T^{8} - 6045629293426602 p^{3} T^{9} - 2913767666766488 p^{6} T^{10} - 341085867174 p^{9} T^{11} + 20874591478 p^{12} T^{12} + 7042728 p^{15} T^{13} - 233978 p^{18} T^{14} - 30 p^{21} T^{15} + p^{24} T^{16}$$
53 $$1 - 480 T - 133052 T^{2} + 78547008 T^{3} + 2880222202 T^{4} + 945699549984 T^{5} - 1820912761525232 T^{6} - 425561990543160096 T^{7} +$$$$41\!\cdots\!55$$$$T^{8} - 425561990543160096 p^{3} T^{9} - 1820912761525232 p^{6} T^{10} + 945699549984 p^{9} T^{11} + 2880222202 p^{12} T^{12} + 78547008 p^{15} T^{13} - 133052 p^{18} T^{14} - 480 p^{21} T^{15} + p^{24} T^{16}$$
59 $$1 + 296 T - 225094 T^{2} + 26071576 T^{3} + 48047416978 T^{4} - 6396496161492 T^{5} + 12987765766551856 T^{6} + 3524743554415297424 T^{7} -$$$$30\!\cdots\!89$$$$T^{8} + 3524743554415297424 p^{3} T^{9} + 12987765766551856 p^{6} T^{10} - 6396496161492 p^{9} T^{11} + 48047416978 p^{12} T^{12} + 26071576 p^{15} T^{13} - 225094 p^{18} T^{14} + 296 p^{21} T^{15} + p^{24} T^{16}$$
61 $$1 - 474 T - 78214 T^{2} - 300891220 T^{3} + 155813021293 T^{4} + 16287352656676 T^{5} + 53973600563787870 T^{6} - 25862651144467518334 T^{7} -$$$$28\!\cdots\!60$$$$T^{8} - 25862651144467518334 p^{3} T^{9} + 53973600563787870 p^{6} T^{10} + 16287352656676 p^{9} T^{11} + 155813021293 p^{12} T^{12} - 300891220 p^{15} T^{13} - 78214 p^{18} T^{14} - 474 p^{21} T^{15} + p^{24} T^{16}$$
67 $$1 - 1319 T + 435894 T^{2} + 260547003 T^{3} - 228312863079 T^{4} + 52877715626208 T^{5} + 12075026282780822 T^{6} - 31080208875847270882 T^{7} +$$$$25\!\cdots\!76$$$$T^{8} - 31080208875847270882 p^{3} T^{9} + 12075026282780822 p^{6} T^{10} + 52877715626208 p^{9} T^{11} - 228312863079 p^{12} T^{12} + 260547003 p^{15} T^{13} + 435894 p^{18} T^{14} - 1319 p^{21} T^{15} + p^{24} T^{16}$$
71 $$( 1 + 926 T + 1215866 T^{2} + 651674910 T^{3} + 558490511946 T^{4} + 651674910 p^{3} T^{5} + 1215866 p^{6} T^{6} + 926 p^{9} T^{7} + p^{12} T^{8} )^{2}$$
73 $$1 + 1423 T + 151179 T^{2} - 356462016 T^{3} + 225594950031 T^{4} + 190838170992351 T^{5} - 111189108199360714 T^{6} - 1240152686167800121 T^{7} +$$$$82\!\cdots\!20$$$$T^{8} - 1240152686167800121 p^{3} T^{9} - 111189108199360714 p^{6} T^{10} + 190838170992351 p^{9} T^{11} + 225594950031 p^{12} T^{12} - 356462016 p^{15} T^{13} + 151179 p^{18} T^{14} + 1423 p^{21} T^{15} + p^{24} T^{16}$$
79 $$1 - 765 T - 740524 T^{2} + 287899523 T^{3} + 440031712255 T^{4} + 69755733771928 T^{5} - 263635131983182680 T^{6} - 20666144138306564776 T^{7} +$$$$11\!\cdots\!60$$$$T^{8} - 20666144138306564776 p^{3} T^{9} - 263635131983182680 p^{6} T^{10} + 69755733771928 p^{9} T^{11} + 440031712255 p^{12} T^{12} + 287899523 p^{15} T^{13} - 740524 p^{18} T^{14} - 765 p^{21} T^{15} + p^{24} T^{16}$$
83 $$( 1 + 10 p T + 2276504 T^{2} + 1415613270 T^{3} + 1949801366142 T^{4} + 1415613270 p^{3} T^{5} + 2276504 p^{6} T^{6} + 10 p^{10} T^{7} + p^{12} T^{8} )^{2}$$
89 $$1 + 864 T - 2003126 T^{2} - 915016392 T^{3} + 36952363898 p T^{4} + 759050670074364 T^{5} - 3398637459395982080 T^{6} -$$$$20\!\cdots\!36$$$$T^{7} +$$$$27\!\cdots\!27$$$$T^{8} -$$$$20\!\cdots\!36$$$$p^{3} T^{9} - 3398637459395982080 p^{6} T^{10} + 759050670074364 p^{9} T^{11} + 36952363898 p^{13} T^{12} - 915016392 p^{15} T^{13} - 2003126 p^{18} T^{14} + 864 p^{21} T^{15} + p^{24} T^{16}$$
97 $$( 1 - 544 T + 2676994 T^{2} - 857057120 T^{3} + 3128962808483 T^{4} - 857057120 p^{3} T^{5} + 2676994 p^{6} T^{6} - 544 p^{9} T^{7} + p^{12} T^{8} )^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$