Properties

Label 16-363e8-1.1-c1e8-0-5
Degree $16$
Conductor $3.015\times 10^{20}$
Sign $1$
Analytic cond. $4982.75$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 5·4-s + 4·6-s − 4·8-s + 3·9-s − 10·12-s + 4·16-s − 12·17-s − 6·18-s + 8·24-s − 2·25-s + 4·29-s + 4·31-s + 22·32-s + 24·34-s + 15·36-s − 16·37-s − 12·41-s − 8·48-s − 12·49-s + 4·50-s + 24·51-s − 8·58-s − 8·62-s − 44·64-s + 16·67-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 5/2·4-s + 1.63·6-s − 1.41·8-s + 9-s − 2.88·12-s + 16-s − 2.91·17-s − 1.41·18-s + 1.63·24-s − 2/5·25-s + 0.742·29-s + 0.718·31-s + 3.88·32-s + 4.11·34-s + 5/2·36-s − 2.63·37-s − 1.87·41-s − 1.15·48-s − 1.71·49-s + 0.565·50-s + 3.36·51-s − 1.05·58-s − 1.01·62-s − 5.5·64-s + 1.95·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 11^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 11^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{8} \cdot 11^{16}\)
Sign: $1$
Analytic conductor: \(4982.75\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{8} \cdot 11^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.402809980\)
\(L(\frac12)\) \(\approx\) \(1.402809980\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 2 T + T^{2} - 4 T^{3} - 11 T^{4} - 4 p T^{5} + p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
11 \( 1 \)
good2 \( ( 1 + T - T^{2} - 3 T^{3} - T^{4} - 3 p T^{5} - p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} )^{2} \)
5 \( 1 + 2 T^{2} - 21 T^{4} - 92 T^{6} + 341 T^{8} - 92 p^{2} T^{10} - 21 p^{4} T^{12} + 2 p^{6} T^{14} + p^{8} T^{16} \)
7 \( 1 + 12 T^{2} + 95 T^{4} + 552 T^{6} + 1969 T^{8} + 552 p^{2} T^{10} + 95 p^{4} T^{12} + 12 p^{6} T^{14} + p^{8} T^{16} \)
13 \( 1 + 8 T^{2} - 105 T^{4} - 2192 T^{6} + 209 T^{8} - 2192 p^{2} T^{10} - 105 p^{4} T^{12} + 8 p^{6} T^{14} + p^{8} T^{16} \)
17 \( ( 1 + 6 T + 19 T^{2} + 12 T^{3} - 251 T^{4} + 12 p T^{5} + 19 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
19 \( 1 + 20 T^{2} + 39 T^{4} - 6440 T^{6} - 142879 T^{8} - 6440 p^{2} T^{10} + 39 p^{4} T^{12} + 20 p^{6} T^{14} + p^{8} T^{16} \)
23 \( ( 1 - p T^{2} )^{8} \)
29 \( ( 1 - 2 T - 25 T^{2} + 108 T^{3} + 509 T^{4} + 108 p T^{5} - 25 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
31 \( ( 1 - 2 T - 27 T^{2} + 116 T^{3} + 605 T^{4} + 116 p T^{5} - 27 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
37 \( ( 1 + 8 T + 27 T^{2} - 80 T^{3} - 1639 T^{4} - 80 p T^{5} + 27 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
41 \( ( 1 + 6 T - 5 T^{2} - 276 T^{3} - 1451 T^{4} - 276 p T^{5} - 5 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
43 \( ( 1 - 68 T^{2} + p^{2} T^{4} )^{4} \)
47 \( ( 1 - 30 T + 493 T^{2} - 5400 T^{3} + 43069 T^{4} - 5400 p T^{5} + 493 p^{2} T^{6} - 30 p^{3} T^{7} + p^{4} T^{8} )( 1 + 30 T + 493 T^{2} + 5400 T^{3} + 43069 T^{4} + 5400 p T^{5} + 493 p^{2} T^{6} + 30 p^{3} T^{7} + p^{4} T^{8} ) \)
53 \( ( 1 - 30 T + 487 T^{2} - 5400 T^{3} + 44749 T^{4} - 5400 p T^{5} + 487 p^{2} T^{6} - 30 p^{3} T^{7} + p^{4} T^{8} )( 1 + 30 T + 487 T^{2} + 5400 T^{3} + 44749 T^{4} + 5400 p T^{5} + 487 p^{2} T^{6} + 30 p^{3} T^{7} + p^{4} T^{8} ) \)
59 \( 1 - 10 T^{2} - 3381 T^{4} + 68620 T^{6} + 11083061 T^{8} + 68620 p^{2} T^{10} - 3381 p^{4} T^{12} - 10 p^{6} T^{14} + p^{8} T^{16} \)
61 \( 1 + 24 T^{2} - 3145 T^{4} - 164784 T^{6} + 7747729 T^{8} - 164784 p^{2} T^{10} - 3145 p^{4} T^{12} + 24 p^{6} T^{14} + p^{8} T^{16} \)
67 \( ( 1 - 2 T + p T^{2} )^{8} \)
71 \( 1 + 134 T^{2} + 12915 T^{4} + 1055116 T^{6} + 76281029 T^{8} + 1055116 p^{2} T^{10} + 12915 p^{4} T^{12} + 134 p^{6} T^{14} + p^{8} T^{16} \)
73 \( 1 + 144 T^{2} + 15407 T^{4} + 1451232 T^{6} + 126873505 T^{8} + 1451232 p^{2} T^{10} + 15407 p^{4} T^{12} + 144 p^{6} T^{14} + p^{8} T^{16} \)
79 \( 1 + 140 T^{2} + 13359 T^{4} + 996520 T^{6} + 56139281 T^{8} + 996520 p^{2} T^{10} + 13359 p^{4} T^{12} + 140 p^{6} T^{14} + p^{8} T^{16} \)
83 \( ( 1 - 16 T + 173 T^{2} - 1440 T^{3} + 8681 T^{4} - 1440 p T^{5} + 173 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
89 \( ( 1 - p T^{2} )^{8} \)
97 \( ( 1 - 2 T - 93 T^{2} + 380 T^{3} + 8261 T^{4} + 380 p T^{5} - 93 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.10881160582943002626847091896, −4.88023841193362022900817158924, −4.85565252064632847934521381546, −4.68928019924797214950462724040, −4.51846021838089340681344488323, −4.43045537442779878301613375833, −4.34410123473468676769700925314, −4.10805070480544499502035427517, −3.91551972772466679497924925079, −3.68754672046212525200179146429, −3.49407391937860238627529053898, −3.39141934965211634748696968432, −3.09320112531718476959431527089, −3.07931351541466782478857295826, −2.68006223524200454241509391923, −2.59914136017657930514177624396, −2.42365099657029890462795161240, −2.17858318232700489379133078376, −1.84998781243260543389574104742, −1.81696958320895925347014336166, −1.71376286035673470351072787189, −1.57719128515992461880181746263, −0.858793063171722426060353246985, −0.812133292760681154756368517231, −0.44736532433448732277083633163, 0.44736532433448732277083633163, 0.812133292760681154756368517231, 0.858793063171722426060353246985, 1.57719128515992461880181746263, 1.71376286035673470351072787189, 1.81696958320895925347014336166, 1.84998781243260543389574104742, 2.17858318232700489379133078376, 2.42365099657029890462795161240, 2.59914136017657930514177624396, 2.68006223524200454241509391923, 3.07931351541466782478857295826, 3.09320112531718476959431527089, 3.39141934965211634748696968432, 3.49407391937860238627529053898, 3.68754672046212525200179146429, 3.91551972772466679497924925079, 4.10805070480544499502035427517, 4.34410123473468676769700925314, 4.43045537442779878301613375833, 4.51846021838089340681344488323, 4.68928019924797214950462724040, 4.85565252064632847934521381546, 4.88023841193362022900817158924, 5.10881160582943002626847091896

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.