L(s) = 1 | + 8·13-s + 8·37-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 32·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯ |
L(s) = 1 | + 8·13-s + 8·37-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 32·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{16} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{16} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(7.736500008\) |
\(L(\frac12)\) |
\(\approx\) |
\(7.736500008\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T^{8} \) |
| 7 | \( 1 \) |
| 17 | \( 1 + T^{8} \) |
good | 3 | \( 1 + T^{16} \) |
| 5 | \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \) |
| 11 | \( 1 + T^{16} \) |
| 13 | \( ( 1 - T )^{8}( 1 + T^{2} )^{4} \) |
| 19 | \( ( 1 + T^{8} )^{2} \) |
| 23 | \( 1 + T^{16} \) |
| 29 | \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \) |
| 31 | \( 1 + T^{16} \) |
| 37 | \( ( 1 - T )^{8}( 1 + T^{8} ) \) |
| 41 | \( ( 1 + T^{2} )^{4}( 1 + T^{8} ) \) |
| 43 | \( ( 1 + T^{8} )^{2} \) |
| 47 | \( ( 1 + T^{4} )^{4} \) |
| 53 | \( ( 1 + T^{2} )^{4}( 1 + T^{4} )^{2} \) |
| 59 | \( ( 1 + T^{8} )^{2} \) |
| 61 | \( ( 1 + T^{2} )^{4}( 1 + T^{8} ) \) |
| 67 | \( ( 1 + T^{2} )^{8} \) |
| 71 | \( 1 + T^{16} \) |
| 73 | \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \) |
| 79 | \( 1 + T^{16} \) |
| 83 | \( ( 1 + T^{8} )^{2} \) |
| 89 | \( ( 1 + T^{4} )^{4} \) |
| 97 | \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.74525691457417818661471107468, −3.68834038120134269828626261613, −3.67912524995280702781805175386, −3.64220783691536117804935198785, −3.27088980362568678000930031419, −3.18872286981222964428811767547, −3.11125772861780942345976302348, −2.99750412133669500201882345690, −2.91933398413382598881907258715, −2.87679124674465301627324536735, −2.64396345573457361494595660662, −2.51016142409128919257421190712, −2.32067262049788211150446961591, −2.11430303594357086416553983875, −2.05971571441448430910075645070, −1.94429569771089455934424791282, −1.90578955481029503645851528710, −1.52519391527340899580865129749, −1.35321873765316198875998271096, −1.30295903260466402709227821052, −1.07898005098471423464073347954, −1.06585308055232875366273062727, −0.909859101426476994500068359206, −0.896810696893167347814059235863, −0.76665215685558266321817816891,
0.76665215685558266321817816891, 0.896810696893167347814059235863, 0.909859101426476994500068359206, 1.06585308055232875366273062727, 1.07898005098471423464073347954, 1.30295903260466402709227821052, 1.35321873765316198875998271096, 1.52519391527340899580865129749, 1.90578955481029503645851528710, 1.94429569771089455934424791282, 2.05971571441448430910075645070, 2.11430303594357086416553983875, 2.32067262049788211150446961591, 2.51016142409128919257421190712, 2.64396345573457361494595660662, 2.87679124674465301627324536735, 2.91933398413382598881907258715, 2.99750412133669500201882345690, 3.11125772861780942345976302348, 3.18872286981222964428811767547, 3.27088980362568678000930031419, 3.64220783691536117804935198785, 3.67912524995280702781805175386, 3.68834038120134269828626261613, 3.74525691457417818661471107468
Plot not available for L-functions of degree greater than 10.