L(s) = 1 | − 6·2-s − 3-s + 23·4-s + 6·5-s + 6·6-s + 3·7-s − 72·8-s − 2·9-s − 36·10-s + 2·11-s − 23·12-s − 6·13-s − 18·14-s − 6·15-s + 199·16-s + 3·17-s + 12·18-s + 5·19-s + 138·20-s − 3·21-s − 12·22-s + 22·23-s + 72·24-s + 31·25-s + 36·26-s − 3·27-s + 69·28-s + ⋯ |
L(s) = 1 | − 4.24·2-s − 0.577·3-s + 23/2·4-s + 2.68·5-s + 2.44·6-s + 1.13·7-s − 25.4·8-s − 2/3·9-s − 11.3·10-s + 0.603·11-s − 6.63·12-s − 1.66·13-s − 4.81·14-s − 1.54·15-s + 49.7·16-s + 0.727·17-s + 2.82·18-s + 1.14·19-s + 30.8·20-s − 0.654·21-s − 2.55·22-s + 4.58·23-s + 14.6·24-s + 31/5·25-s + 7.06·26-s − 0.577·27-s + 13.0·28-s + ⋯ |
Λ(s)=(=((3116)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((3116)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.368930595 |
L(21) |
≈ |
3.368930595 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | (1+3T+pT2+T4+p3T6+3p3T7+p4T8)2 |
| 3 | 1+T+pT2+8T3+8T4−7T5+2pT6−56T7−137T8−56pT9+2p3T10−7p3T11+8p4T12+8p5T13+p7T14+p7T15+p8T16 |
| 5 | (1−3T−2T2−3T3+51T4−3pT5−2p2T6−3p3T7+p4T8)2 |
| 7 | 1−3T+pT2−36T3+108T4−219T5+122pT6−2628T7+5483T8−2628pT9+122p3T10−219p3T11+108p4T12−36p5T13+p7T14−3p7T15+p8T16 |
| 11 | 1−2T−9T2+42T3−124T4+84T5+629T6−3734T7+13467T8−3734pT9+629p2T10+84p3T11−124p4T12+42p5T13−9p6T14−2p7T15+p8T16 |
| 13 | 1+6T+pT2−102T3−792T4−2892T5−1009T6+36864T7+214223T8+36864pT9−1009p2T10−2892p3T11−792p4T12−102p5T13+p7T14+6p7T15+p8T16 |
| 17 | 1−3T+7T2+144T3−732T4+1641T5+1934T6−49698T7+169253T8−49698pT9+1934p2T10+1641p3T11−732p4T12+144p5T13+7p6T14−3p7T15+p8T16 |
| 19 | 1−5T+pT2−160T3+800T4−2765T5+914pT6−88480T7+312079T8−88480pT9+914p3T10−2765p3T11+800p4T12−160p5T13+p7T14−5p7T15+p8T16 |
| 23 | (1−11T+38T2−125T3+821T4−125pT5+38p2T6−11p3T7+p4T8)2 |
| 29 | (1−5T+31T2−115T3+96T4−115pT5+31p2T6−5p3T7+p4T8)2 |
| 37 | (1−4T−57T2+4T3+3368T4+4pT5−57p2T6−4p3T7+p4T8)2 |
| 41 | 1+8T+pT2−528T3−6224T4−39696T5−2521T6+1579436T7+15159727T8+1579436pT9−2521p2T10−39696p3T11−6224p4T12−528p5T13+p7T14+8p7T15+p8T16 |
| 43 | 1+T+28T2+443T3−232T4−6152T5−2224T6−797146T7−5551967T8−797146pT9−2224p2T10−6152p3T11−232p4T12+443p5T13+28p6T14+p7T15+p8T16 |
| 47 | (1−7T−23T2+385T3−1284T4+385pT5−23p2T6−7p3T7+p4T8)2 |
| 53 | 1+21T+323T2+3588T3+35568T4+324633T5+2767366T6+22572954T7+167761313T8+22572954pT9+2767366p2T10+324633p3T11+35568p4T12+3588p5T13+323p6T14+21p7T15+p8T16 |
| 59 | 1+5T−T2−900T3−8060T4−17835T5+134126T6+3072320T7+18108079T8+3072320pT9+134126p2T10−17835p3T11−8060p4T12−900p5T13−p6T14+5p7T15+p8T16 |
| 61 | (1−4T+46T2−4pT3+p2T4)4 |
| 67 | (1−4T−117T2+4T3+12128T4+4pT5−117p2T6−4p3T7+p4T8)2 |
| 71 | 1−7T−4T2+1227T3−13364T4+49044T5+214904T6−6815734T7+62113357T8−6815734pT9+214904p2T10+49044p3T11−13364p4T12+1227p5T13−4p6T14−7p7T15+p8T16 |
| 73 | 1+21T+208T2−297T3−27162T4−338082T5−1041544T6+15918264T7+260450783T8+15918264pT9−1041544p2T10−338082p3T11−27162p4T12−297p5T13+208p6T14+21p7T15+p8T16 |
| 79 | 1+pT2−p3T6−p4T8−p5T10+p7T14+p8T16 |
| 83 | 1−14T+183T2−42T3−7462T4+179508T5+16211T6−9573326T7+219347043T8−9573326pT9+16211p2T10+179508p3T11−7462p4T12−42p5T13+183p6T14−14p7T15+p8T16 |
| 89 | (1−5T−29T2+785T3−624T4+785pT5−29p2T6−5p3T7+p4T8)2 |
| 97 | (1+3T+182T2−345T3+16591T4−345pT5+182p2T6+3p3T7+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.47045329453765318506814609737, −4.13750987003398233053581278421, −4.09782730757576199477479132867, −3.76159487124326704021399026823, −3.39177766940073419419721899966, −3.30815963737098415541682036502, −3.13743565435312915766343593389, −3.08583520114776822871969633819, −3.08305451208115529839210966350, −2.91417491809159066820847584683, −2.81214609046502376923362719476, −2.72562334396295455238466597356, −2.72329667748480717692769130805, −2.32322323920619696404217915511, −2.00147103659247028781458586740, −1.99563207359567482999859754532, −1.98482014245594317101545805412, −1.70711799803223450735004374021, −1.56426143540442415862744340013, −1.36707271579727279434767534580, −0.995672606876184435381753046402, −0.983601736695836751077992218048, −0.983392101654024871022079181097, −0.53757221368283849994529731969, −0.53685880572123514149093412181,
0.53685880572123514149093412181, 0.53757221368283849994529731969, 0.983392101654024871022079181097, 0.983601736695836751077992218048, 0.995672606876184435381753046402, 1.36707271579727279434767534580, 1.56426143540442415862744340013, 1.70711799803223450735004374021, 1.98482014245594317101545805412, 1.99563207359567482999859754532, 2.00147103659247028781458586740, 2.32322323920619696404217915511, 2.72329667748480717692769130805, 2.72562334396295455238466597356, 2.81214609046502376923362719476, 2.91417491809159066820847584683, 3.08305451208115529839210966350, 3.08583520114776822871969633819, 3.13743565435312915766343593389, 3.30815963737098415541682036502, 3.39177766940073419419721899966, 3.76159487124326704021399026823, 4.09782730757576199477479132867, 4.13750987003398233053581278421, 4.47045329453765318506814609737
Plot not available for L-functions of degree greater than 10.