L(s) = 1 | + 2·2-s + 3·4-s + 4·5-s − 7-s + 2·8-s + 9-s + 8·10-s − 2·14-s + 16-s + 2·18-s − 19-s + 12·20-s + 10·25-s − 3·28-s − 2·32-s − 4·35-s + 3·36-s − 2·38-s + 8·40-s − 41-s + 4·45-s − 4·47-s + 20·50-s − 2·56-s − 59-s − 63-s − 4·64-s + ⋯ |
L(s) = 1 | + 2·2-s + 3·4-s + 4·5-s − 7-s + 2·8-s + 9-s + 8·10-s − 2·14-s + 16-s + 2·18-s − 19-s + 12·20-s + 10·25-s − 3·28-s − 2·32-s − 4·35-s + 3·36-s − 2·38-s + 8·40-s − 41-s + 4·45-s − 4·47-s + 20·50-s − 2·56-s − 59-s − 63-s − 4·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(5.233665649\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.233665649\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 3 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 5 | \( ( 1 - T )^{8}( 1 + T + T^{2} )^{4} \) |
| 7 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 11 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 13 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 17 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 19 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 23 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 37 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 41 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 43 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 47 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{4} \) |
| 53 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 59 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 61 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 67 | \( ( 1 + T + T^{2} )^{8} \) |
| 71 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 73 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 79 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 83 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 89 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 97 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.55495391260238007933615446520, −4.47662477328812333837678216858, −4.37816571753116951183572140188, −4.26716324177162205069320005051, −4.17877722064208209460311117332, −3.91734267389053394036883341751, −3.66391454847259638094659734680, −3.44368012399921943526748564184, −3.37894128414279609518809411443, −3.17670698977402126135125818953, −3.12073496653533552091809481045, −3.09585172393795666832028984302, −3.03803085588313957998326853375, −2.97479553097848224677383139969, −2.71665754552043616045680626578, −2.55025535752551345783689703886, −2.27960521838163076910440479858, −2.09545288495577375716758236149, −1.91889955753860796018432583885, −1.82322750323479001888303308449, −1.81280927561202971359910187959, −1.62630539029025569950701040810, −1.54376595017761818053877068744, −1.16416891651765383511647796994, −1.00061971667030243643718911363,
1.00061971667030243643718911363, 1.16416891651765383511647796994, 1.54376595017761818053877068744, 1.62630539029025569950701040810, 1.81280927561202971359910187959, 1.82322750323479001888303308449, 1.91889955753860796018432583885, 2.09545288495577375716758236149, 2.27960521838163076910440479858, 2.55025535752551345783689703886, 2.71665754552043616045680626578, 2.97479553097848224677383139969, 3.03803085588313957998326853375, 3.09585172393795666832028984302, 3.12073496653533552091809481045, 3.17670698977402126135125818953, 3.37894128414279609518809411443, 3.44368012399921943526748564184, 3.66391454847259638094659734680, 3.91734267389053394036883341751, 4.17877722064208209460311117332, 4.26716324177162205069320005051, 4.37816571753116951183572140188, 4.47662477328812333837678216858, 4.55495391260238007933615446520
Plot not available for L-functions of degree greater than 10.