Properties

Label 16-3072e8-1.1-c1e8-0-1
Degree $16$
Conductor $7.932\times 10^{27}$
Sign $1$
Analytic cond. $1.31095\times 10^{11}$
Root an. cond. $4.95278$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·7-s − 4·9-s + 16·25-s − 24·31-s + 8·49-s − 32·63-s − 16·71-s + 16·73-s − 24·79-s + 10·81-s + 16·89-s + 8·103-s − 16·113-s + 40·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 48·169-s + 173-s + 128·175-s + 179-s + ⋯
L(s)  = 1  + 3.02·7-s − 4/3·9-s + 16/5·25-s − 4.31·31-s + 8/7·49-s − 4.03·63-s − 1.89·71-s + 1.87·73-s − 2.70·79-s + 10/9·81-s + 1.69·89-s + 0.788·103-s − 1.50·113-s + 3.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.69·169-s + 0.0760·173-s + 9.67·175-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{80} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{80} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{80} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.31095\times 10^{11}\)
Root analytic conductor: \(4.95278\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{3072} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{80} \cdot 3^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5133149383\)
\(L(\frac12)\) \(\approx\) \(0.5133149383\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 + T^{2} )^{4} \)
good5 \( 1 - 16 T^{2} + 28 p T^{4} - 176 p T^{6} + 4614 T^{8} - 176 p^{3} T^{10} + 28 p^{5} T^{12} - 16 p^{6} T^{14} + p^{8} T^{16} \)
7 \( ( 1 - 4 T + 20 T^{2} - 60 T^{3} + 186 T^{4} - 60 p T^{5} + 20 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
11 \( 1 - 40 T^{2} + 860 T^{4} - 13016 T^{6} + 156454 T^{8} - 13016 p^{2} T^{10} + 860 p^{4} T^{12} - 40 p^{6} T^{14} + p^{8} T^{16} \)
13 \( 1 - 48 T^{2} + 1156 T^{4} - 19984 T^{6} + 282662 T^{8} - 19984 p^{2} T^{10} + 1156 p^{4} T^{12} - 48 p^{6} T^{14} + p^{8} T^{16} \)
17 \( ( 1 + 36 T^{2} - 64 T^{3} + 662 T^{4} - 64 p T^{5} + 36 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
19 \( 1 - 88 T^{2} + 3868 T^{4} - 112680 T^{6} + 2435942 T^{8} - 112680 p^{2} T^{10} + 3868 p^{4} T^{12} - 88 p^{6} T^{14} + p^{8} T^{16} \)
23 \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{4} \)
29 \( 1 - 144 T^{2} + 10444 T^{4} - 491504 T^{6} + 16611398 T^{8} - 491504 p^{2} T^{10} + 10444 p^{4} T^{12} - 144 p^{6} T^{14} + p^{8} T^{16} \)
31 \( ( 1 + 12 T + 164 T^{2} + 1140 T^{3} + 8218 T^{4} + 1140 p T^{5} + 164 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
37 \( 1 - 144 T^{2} + 12356 T^{4} - 705328 T^{6} + 30309990 T^{8} - 705328 p^{2} T^{10} + 12356 p^{4} T^{12} - 144 p^{6} T^{14} + p^{8} T^{16} \)
41 \( ( 1 + 100 T^{2} - 192 T^{3} + 4726 T^{4} - 192 p T^{5} + 100 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
43 \( 1 - 152 T^{2} + 11228 T^{4} - 14648 p T^{6} + 29992230 T^{8} - 14648 p^{3} T^{10} + 11228 p^{4} T^{12} - 152 p^{6} T^{14} + p^{8} T^{16} \)
47 \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{4} \)
53 \( 1 - 272 T^{2} + 35084 T^{4} - 2903152 T^{6} + 175858822 T^{8} - 2903152 p^{2} T^{10} + 35084 p^{4} T^{12} - 272 p^{6} T^{14} + p^{8} T^{16} \)
59 \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{4} \)
61 \( 1 - 336 T^{2} + 56324 T^{4} - 5962864 T^{6} + 434252454 T^{8} - 5962864 p^{2} T^{10} + 56324 p^{4} T^{12} - 336 p^{6} T^{14} + p^{8} T^{16} \)
67 \( 1 - 280 T^{2} + 31484 T^{4} - 1872104 T^{6} + 96389158 T^{8} - 1872104 p^{2} T^{10} + 31484 p^{4} T^{12} - 280 p^{6} T^{14} + p^{8} T^{16} \)
71 \( ( 1 + 8 T + 252 T^{2} + 1512 T^{3} + 25766 T^{4} + 1512 p T^{5} + 252 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 8 T + 196 T^{2} - 1816 T^{3} + 18022 T^{4} - 1816 p T^{5} + 196 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + 12 T + 148 T^{2} - 44 T^{3} + 794 T^{4} - 44 p T^{5} + 148 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
83 \( 1 - 232 T^{2} + 24476 T^{4} - 2850968 T^{6} + 306423910 T^{8} - 2850968 p^{2} T^{10} + 24476 p^{4} T^{12} - 232 p^{6} T^{14} + p^{8} T^{16} \)
89 \( ( 1 - 8 T + 156 T^{2} - 504 T^{3} + 10022 T^{4} - 504 p T^{5} + 156 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
97 \( ( 1 + 164 T^{2} + 768 T^{3} + 13510 T^{4} + 768 p T^{5} + 164 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.64390511414266871370337933563, −3.42082400333398484311204239755, −3.40099366876499198303596006714, −3.19439322986092907175846329698, −3.19171548592230284062624845366, −3.11668907299259324402401089137, −2.80644089449937185565487791420, −2.77001940787435140977902300231, −2.60493676687538436863132105157, −2.58540286079200609609015262359, −2.46416384824110385239545507976, −2.16080802610381799170493785515, −2.03853691976575106058864825599, −2.01163853133966398416553318626, −1.79164628328548991378238026534, −1.67913195417614797231818087898, −1.58033302749923087970096427444, −1.51714152573697640324214817255, −1.48860537023603168447250949542, −1.07635836477047447887714846415, −0.976980473448459421816177034803, −0.882159519218174472185509277889, −0.55100458888902263295292373052, −0.39273111951828374290520963555, −0.04976240190579107571895710566, 0.04976240190579107571895710566, 0.39273111951828374290520963555, 0.55100458888902263295292373052, 0.882159519218174472185509277889, 0.976980473448459421816177034803, 1.07635836477047447887714846415, 1.48860537023603168447250949542, 1.51714152573697640324214817255, 1.58033302749923087970096427444, 1.67913195417614797231818087898, 1.79164628328548991378238026534, 2.01163853133966398416553318626, 2.03853691976575106058864825599, 2.16080802610381799170493785515, 2.46416384824110385239545507976, 2.58540286079200609609015262359, 2.60493676687538436863132105157, 2.77001940787435140977902300231, 2.80644089449937185565487791420, 3.11668907299259324402401089137, 3.19171548592230284062624845366, 3.19439322986092907175846329698, 3.40099366876499198303596006714, 3.42082400333398484311204239755, 3.64390511414266871370337933563

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.