Properties

Label 16-300e8-1.1-c5e8-0-0
Degree $16$
Conductor $6.561\times 10^{19}$
Sign $1$
Analytic cond. $2.87246\times 10^{13}$
Root an. cond. $6.93650$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.84e4·31-s + 2.33e5·61-s + 3.16e4·81-s + 6.89e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯
L(s)  = 1  − 9.05·31-s + 8.04·61-s + 0.536·81-s + 4.28·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 2.54e−6·173-s + 2.33e−6·179-s + 2.26e−6·181-s + 1.98e−6·191-s + 1.93e−6·193-s + 1.83e−6·197-s + 1.79e−6·199-s + 1.54e−6·211-s + 1.34e−6·223-s + 1.28e−6·227-s + 1.26e−6·229-s + 1.20e−6·233-s + 1.13e−6·239-s + 1.10e−6·241-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 5^{16}\)
Sign: $1$
Analytic conductor: \(2.87246\times 10^{13}\)
Root analytic conductor: \(6.93650\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 3^{8} \cdot 5^{16} ,\ ( \ : [5/2]^{8} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(9.821009508\)
\(L(\frac12)\) \(\approx\) \(9.821009508\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3518 p^{2} T^{4} + p^{20} T^{8} \)
5 \( 1 \)
good7 \( ( 1 - 457164574 T^{4} + p^{20} T^{8} )^{2} \)
11 \( ( 1 - 172342 T^{2} + p^{10} T^{4} )^{4} \)
13 \( ( 1 + 257618185106 T^{4} + p^{20} T^{8} )^{2} \)
17 \( ( 1 + 3873297949058 T^{4} + p^{20} T^{8} )^{2} \)
19 \( ( 1 - 4127734 T^{2} + p^{10} T^{4} )^{4} \)
23 \( ( 1 + 53716725498338 T^{4} + p^{20} T^{8} )^{2} \)
29 \( ( 1 - 13041062 T^{2} + p^{10} T^{4} )^{4} \)
31 \( ( 1 + 6056 T + p^{5} T^{2} )^{8} \)
37 \( ( 1 - 9232649039873422 T^{4} + p^{20} T^{8} )^{2} \)
41 \( ( 1 - 152489362 T^{2} + p^{10} T^{4} )^{4} \)
43 \( ( 1 + 39483316792083506 T^{4} + p^{20} T^{8} )^{2} \)
47 \( ( 1 - 38535261982721662 T^{4} + p^{20} T^{8} )^{2} \)
53 \( ( 1 - 223599451091958862 T^{4} + p^{20} T^{8} )^{2} \)
59 \( ( 1 - 158955242 T^{2} + p^{10} T^{4} )^{4} \)
61 \( ( 1 - 29234 T + p^{5} T^{2} )^{8} \)
67 \( ( 1 + 2963513604903050066 T^{4} + p^{20} T^{8} )^{2} \)
71 \( ( 1 - 1925755342 T^{2} + p^{10} T^{4} )^{4} \)
73 \( ( 1 - 7822328710261861342 T^{4} + p^{20} T^{8} )^{2} \)
79 \( ( 1 - 5077222942 T^{2} + p^{10} T^{4} )^{4} \)
83 \( ( 1 + 19466793867600919058 T^{4} + p^{20} T^{8} )^{2} \)
89 \( ( 1 + 7975834738 T^{2} + p^{10} T^{4} )^{4} \)
97 \( ( 1 + \)\(14\!\cdots\!06\)\( T^{4} + p^{20} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.18719104364055208858939577685, −3.91684985347544053066146322815, −3.90045440250568251757859254191, −3.89894279788623140931461106387, −3.83930533141775250311625810693, −3.58790546588771679154769080241, −3.48772928009142499769498360603, −3.39609102782407344892639883342, −2.94103560999191623162316705480, −2.88476502288304943563783311162, −2.75023229148040112488329988467, −2.70890068240126197794107443182, −2.18287726583529408962962683661, −2.06093608412952048825127394930, −1.89473903634621099802236650694, −1.85342735949705921874905385730, −1.76776433589307493872886339754, −1.73010463405311023789490232760, −1.50250947623069039364927151106, −0.944156765432997415592068258617, −0.75689046141659568286122862151, −0.56918887323220978029814816088, −0.50794773993415652033815420012, −0.47680490224857438205336748699, −0.19990642067150879162790229025, 0.19990642067150879162790229025, 0.47680490224857438205336748699, 0.50794773993415652033815420012, 0.56918887323220978029814816088, 0.75689046141659568286122862151, 0.944156765432997415592068258617, 1.50250947623069039364927151106, 1.73010463405311023789490232760, 1.76776433589307493872886339754, 1.85342735949705921874905385730, 1.89473903634621099802236650694, 2.06093608412952048825127394930, 2.18287726583529408962962683661, 2.70890068240126197794107443182, 2.75023229148040112488329988467, 2.88476502288304943563783311162, 2.94103560999191623162316705480, 3.39609102782407344892639883342, 3.48772928009142499769498360603, 3.58790546588771679154769080241, 3.83930533141775250311625810693, 3.89894279788623140931461106387, 3.90045440250568251757859254191, 3.91684985347544053066146322815, 4.18719104364055208858939577685

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.