L(s) = 1 | − 2·2-s − 8·3-s + 16·6-s + 2·7-s + 3·8-s + 36·9-s + 6·11-s + 6·13-s − 4·14-s − 12·17-s − 72·18-s − 16·21-s − 12·22-s − 14·23-s − 24·24-s − 12·26-s − 120·27-s + 8·29-s + 8·31-s − 4·32-s − 48·33-s + 24·34-s + 4·37-s − 48·39-s + 2·41-s + 32·42-s + 2·43-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 4.61·3-s + 6.53·6-s + 0.755·7-s + 1.06·8-s + 12·9-s + 1.80·11-s + 1.66·13-s − 1.06·14-s − 2.91·17-s − 16.9·18-s − 3.49·21-s − 2.55·22-s − 2.91·23-s − 4.89·24-s − 2.35·26-s − 23.0·27-s + 1.48·29-s + 1.43·31-s − 0.707·32-s − 8.35·33-s + 4.11·34-s + 0.657·37-s − 7.68·39-s + 0.312·41-s + 4.93·42-s + 0.304·43-s + ⋯ |
Λ(s)=(=((38⋅516⋅298)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((38⋅516⋅298)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.026294964 |
L(21) |
≈ |
1.026294964 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | (1+T)8 |
| 5 | 1 |
| 29 | (1−T)8 |
good | 2 | 1+pT+p2T2+5T3+p2T4+T6−pT7+3pT8−p2T9+p2T10+p6T12+5p5T13+p8T14+p8T15+p8T16 |
| 7 | 1−2T+11T2−54T3+149T4−248T5+1381T6−2678T7+4659T8−2678pT9+1381p2T10−248p3T11+149p4T12−54p5T13+11p6T14−2p7T15+p8T16 |
| 11 | 1−6T+52T2−224T3+1277T4−4538T5+20835T6−64084T7+257338T8−64084pT9+20835p2T10−4538p3T11+1277p4T12−224p5T13+52p6T14−6p7T15+p8T16 |
| 13 | 1−6T+43T2−136T3+837T4−2474T5+15019T6−42580T7+228905T8−42580pT9+15019p2T10−2474p3T11+837p4T12−136p5T13+43p6T14−6p7T15+p8T16 |
| 17 | 1+12T+126T2+832T3+5153T4+25034T5+123885T6+523636T7+2323644T8+523636pT9+123885p2T10+25034p3T11+5153p4T12+832p5T13+126p6T14+12p7T15+p8T16 |
| 19 | 1+53T2−64T3+2034T4−3912T5+49091T6−125480T7+1069082T8−125480pT9+49091p2T10−3912p3T11+2034p4T12−64p5T13+53p6T14+p8T16 |
| 23 | 1+14T+170T2+1454T3+11888T4+78870T5+496918T6+2681430T7+13842846T8+2681430pT9+496918p2T10+78870p3T11+11888p4T12+1454p5T13+170p6T14+14p7T15+p8T16 |
| 31 | 1−8T+69T2−640T3+5258T4−32016T5+234283T6−1390520T7+7909578T8−1390520pT9+234283p2T10−32016p3T11+5258p4T12−640p5T13+69p6T14−8p7T15+p8T16 |
| 37 | 1−4T−12T2+172T3+2372T4−1692T5−45204T6−18636T7+6125910T8−18636pT9−45204p2T10−1692p3T11+2372p4T12+172p5T13−12p6T14−4p7T15+p8T16 |
| 41 | 1−2T+191T2−282T3+16837T4−9752T5+959494T6+192572T7+42746654T8+192572pT9+959494p2T10−9752p3T11+16837p4T12−282p5T13+191p6T14−2p7T15+p8T16 |
| 43 | 1−2T+149T2+72T3+10982T4+34540T5+531475T6+3068794T7+22437618T8+3068794pT9+531475p2T10+34540p3T11+10982p4T12+72p5T13+149p6T14−2p7T15+p8T16 |
| 47 | 1+12T+4pT2+1860T3+20683T4+166890T5+1504675T6+10715322T7+1738954pT8+10715322pT9+1504675p2T10+166890p3T11+20683p4T12+1860p5T13+4p7T14+12p7T15+p8T16 |
| 53 | 1+4T+214T2+704T3+19568T4+29592T5+1102106T6−1013740T7+54838974T8−1013740pT9+1102106p2T10+29592p3T11+19568p4T12+704p5T13+214p6T14+4p7T15+p8T16 |
| 59 | 1−18T+326T2−4506T3+51520T4−557562T5+5314762T6−46070178T7+378142430T8−46070178pT9+5314762p2T10−557562p3T11+51520p4T12−4506p5T13+326p6T14−18p7T15+p8T16 |
| 61 | 1−12T+277T2−3136T3+39870T4−406200T5+3782003T6−34750508T7+263133730T8−34750508pT9+3782003p2T10−406200p3T11+39870p4T12−3136p5T13+277p6T14−12p7T15+p8T16 |
| 67 | 1−26T+451T2−6050T3+75913T4−854712T5+8812957T6−80168870T7+682181179T8−80168870pT9+8812957p2T10−854712p3T11+75913p4T12−6050p5T13+451p6T14−26p7T15+p8T16 |
| 71 | 1−24T+686T2−11044T3+184584T4−2232828T5+27109682T6−257392272T7+2428813230T8−257392272pT9+27109682p2T10−2232828p3T11+184584p4T12−11044p5T13+686p6T14−24p7T15+p8T16 |
| 73 | 1+14T+300T2+3234T3+50772T4+457014T5+5630548T6+610346pT7+477196566T8+610346p2T9+5630548p2T10+457014p3T11+50772p4T12+3234p5T13+300p6T14+14p7T15+p8T16 |
| 79 | 1−10T+400T2−4042T3+84364T4−769890T5+11509232T6−91087970T7+1083990374T8−91087970pT9+11509232p2T10−769890p3T11+84364p4T12−4042p5T13+400p6T14−10p7T15+p8T16 |
| 83 | 1+40T+916T2+15056T3+213012T4+2711520T5+31421068T6+325262680T7+3089294838T8+325262680pT9+31421068p2T10+2711520p3T11+213012p4T12+15056p5T13+916p6T14+40p7T15+p8T16 |
| 89 | 1−34T+794T2−14230T3+218299T4−2889828T5+34814851T6−375825900T7+3720460370T8−375825900pT9+34814851p2T10−2889828p3T11+218299p4T12−14230p5T13+794p6T14−34p7T15+p8T16 |
| 97 | 1−30T+893T2−16084T3+286266T4−3832848T5+51219155T6−551902430T7+5992632938T8−551902430pT9+51219155p2T10−3832848p3T11+286266p4T12−16084p5T13+893p6T14−30p7T15+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.90458636026905220803120738912, −3.67450135568525205193518487457, −3.60937052124579437279199746164, −3.58670327736621200527163270118, −3.52534545507026369945491233549, −3.36305665104416248127961615640, −3.09276178305079768419663398661, −2.92319217425504110822603056912, −2.65670989075033562603567888800, −2.60968081231717799704858326995, −2.24972894538789046472460918091, −2.22887168477300029850118123728, −2.22533892996369667379036589032, −1.80901281345292221085470937463, −1.79080821953127293385960464746, −1.69678880257147556323904755680, −1.59030735987841178139386653254, −1.47834099910361017075999504871, −1.14884792375178383344801016190, −0.983878420232591295657335447188, −0.807133543343497993372000165724, −0.59146369806927440250452264530, −0.56006473139472308493909671056, −0.47509649146166903336571070911, −0.36888289924507259664087467196,
0.36888289924507259664087467196, 0.47509649146166903336571070911, 0.56006473139472308493909671056, 0.59146369806927440250452264530, 0.807133543343497993372000165724, 0.983878420232591295657335447188, 1.14884792375178383344801016190, 1.47834099910361017075999504871, 1.59030735987841178139386653254, 1.69678880257147556323904755680, 1.79080821953127293385960464746, 1.80901281345292221085470937463, 2.22533892996369667379036589032, 2.22887168477300029850118123728, 2.24972894538789046472460918091, 2.60968081231717799704858326995, 2.65670989075033562603567888800, 2.92319217425504110822603056912, 3.09276178305079768419663398661, 3.36305665104416248127961615640, 3.52534545507026369945491233549, 3.58670327736621200527163270118, 3.60937052124579437279199746164, 3.67450135568525205193518487457, 3.90458636026905220803120738912
Plot not available for L-functions of degree greater than 10.