Properties

Label 16-1900e8-1.1-c0e8-0-3
Degree $16$
Conductor $1.698\times 10^{26}$
Sign $1$
Analytic cond. $0.653560$
Root an. cond. $0.973767$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·19-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s − 256-s + 257-s + ⋯
L(s)  = 1  + 8·19-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s − 256-s + 257-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{16} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{16} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 5^{16} \cdot 19^{8}\)
Sign: $1$
Analytic conductor: \(0.653560\)
Root analytic conductor: \(0.973767\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1900} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 5^{16} \cdot 19^{8} ,\ ( \ : [0]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.334350675\)
\(L(\frac12)\) \(\approx\) \(2.334350675\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T^{8} \)
5 \( 1 \)
19 \( ( 1 - T )^{8} \)
good3 \( ( 1 + T^{8} )^{2} \)
7 \( ( 1 + T^{4} )^{4} \)
11 \( ( 1 + T^{4} )^{4} \)
13 \( ( 1 + T^{8} )^{2} \)
17 \( ( 1 + T^{4} )^{4} \)
23 \( ( 1 + T^{4} )^{4} \)
29 \( ( 1 + T^{2} )^{8} \)
31 \( ( 1 + T^{2} )^{8} \)
37 \( ( 1 + T^{8} )^{2} \)
41 \( ( 1 - T )^{8}( 1 + T )^{8} \)
43 \( ( 1 + T^{4} )^{4} \)
47 \( ( 1 + T^{4} )^{4} \)
53 \( ( 1 + T^{8} )^{2} \)
59 \( ( 1 - T )^{8}( 1 + T )^{8} \)
61 \( ( 1 + T^{4} )^{4} \)
67 \( ( 1 + T^{8} )^{2} \)
71 \( ( 1 + T^{2} )^{8} \)
73 \( ( 1 + T^{4} )^{4} \)
79 \( ( 1 - T )^{8}( 1 + T )^{8} \)
83 \( ( 1 + T^{4} )^{4} \)
89 \( ( 1 + T^{2} )^{8} \)
97 \( ( 1 + T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.01514808232187882780723276098, −3.73220990931999586839118778391, −3.70952165612971071823472358277, −3.68979287640382563508939471400, −3.59628911183967796773882820332, −3.48903225471807521387987812545, −3.33533752556147130701904857578, −3.32533611319583531106423311152, −3.27265439433177827257583767795, −2.97423700743361914369795117728, −2.80330009239656723042943288687, −2.71710528807948341605507902848, −2.68297613835421237226703120875, −2.46411117762019502850953126992, −2.45836522890461094581123297629, −2.26597779040219881941539119828, −2.01821344371936332339271269048, −1.65932673570306424922656240100, −1.64253306514119950758168321757, −1.41162766731036922469977169289, −1.40899582786016670571648708225, −1.09114076169499425814473045388, −1.01674185287284018880123620885, −0.949093783544591426102224395338, −0.65401918380539009953019028975, 0.65401918380539009953019028975, 0.949093783544591426102224395338, 1.01674185287284018880123620885, 1.09114076169499425814473045388, 1.40899582786016670571648708225, 1.41162766731036922469977169289, 1.64253306514119950758168321757, 1.65932673570306424922656240100, 2.01821344371936332339271269048, 2.26597779040219881941539119828, 2.45836522890461094581123297629, 2.46411117762019502850953126992, 2.68297613835421237226703120875, 2.71710528807948341605507902848, 2.80330009239656723042943288687, 2.97423700743361914369795117728, 3.27265439433177827257583767795, 3.32533611319583531106423311152, 3.33533752556147130701904857578, 3.48903225471807521387987812545, 3.59628911183967796773882820332, 3.68979287640382563508939471400, 3.70952165612971071823472358277, 3.73220990931999586839118778391, 4.01514808232187882780723276098

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.