Dirichlet series
L(s) = 1 | − 64·2-s + 1.53e3·4-s + 1.96e3·5-s − 4.49e3·7-s − 1.25e5·10-s − 8.78e3·11-s + 1.62e5·13-s + 2.87e5·14-s − 9.83e5·16-s − 1.07e6·17-s − 1.64e4·19-s + 3.02e6·20-s + 5.62e5·22-s + 2.59e6·23-s + 4.90e6·25-s − 1.04e7·26-s − 6.90e6·28-s + 3.23e6·29-s − 3.48e6·31-s + 2.51e7·32-s + 6.88e7·34-s − 8.84e6·35-s − 4.97e6·37-s + 1.05e6·38-s + 3.46e7·41-s + 4.14e7·43-s − 1.34e7·44-s + ⋯ |
L(s) = 1 | − 2.82·2-s + 3·4-s + 1.40·5-s − 0.707·7-s − 3.98·10-s − 0.180·11-s + 1.57·13-s + 2.00·14-s − 3.75·16-s − 3.12·17-s − 0.0289·19-s + 4.22·20-s + 0.511·22-s + 1.93·23-s + 2.51·25-s − 4.46·26-s − 2.12·28-s + 0.848·29-s − 0.677·31-s + 4.24·32-s + 8.83·34-s − 0.996·35-s − 0.436·37-s + 0.0818·38-s + 1.91·41-s + 1.84·43-s − 0.542·44-s + ⋯ |
Functional equation
Invariants
Degree: | \(16\) |
Conductor: | \(2^{8} \cdot 3^{32}\) |
Sign: | $1$ |
Analytic conductor: | \(2.34865\times 10^{15}\) |
Root analytic conductor: | \(9.13432\) |
Motivic weight: | \(9\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((16,\ 2^{8} \cdot 3^{32} ,\ ( \ : [9/2]^{8} ),\ 1 )\) |
Particular Values
\(L(5)\) | \(\approx\) | \(3.233357554\) |
\(L(\frac12)\) | \(\approx\) | \(3.233357554\) |
\(L(\frac{11}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 2 | \( ( 1 + p^{4} T + p^{8} T^{2} )^{4} \) |
3 | \( 1 \) | |
good | 5 | \( 1 - 1968 T - 1033142 T^{2} + 5161447392 T^{3} - 5179172183639 T^{4} + 1384901732162592 p T^{5} - 65069990362238686 p^{3} T^{6} - \)\(14\!\cdots\!72\)\( p^{3} T^{7} + \)\(94\!\cdots\!56\)\( p^{4} T^{8} - \)\(14\!\cdots\!72\)\( p^{12} T^{9} - 65069990362238686 p^{21} T^{10} + 1384901732162592 p^{28} T^{11} - 5179172183639 p^{36} T^{12} + 5161447392 p^{45} T^{13} - 1033142 p^{54} T^{14} - 1968 p^{63} T^{15} + p^{72} T^{16} \) |
7 | \( 1 + 4496 T - 134312340 T^{2} - 322254528992 T^{3} + 12375797650597322 T^{4} + 2317622011382359056 p T^{5} - \)\(15\!\cdots\!96\)\( p^{2} T^{6} - \)\(66\!\cdots\!28\)\( p^{3} T^{7} + \)\(14\!\cdots\!19\)\( p^{4} T^{8} - \)\(66\!\cdots\!28\)\( p^{12} T^{9} - \)\(15\!\cdots\!96\)\( p^{20} T^{10} + 2317622011382359056 p^{28} T^{11} + 12375797650597322 p^{36} T^{12} - 322254528992 p^{45} T^{13} - 134312340 p^{54} T^{14} + 4496 p^{63} T^{15} + p^{72} T^{16} \) | |
11 | \( 1 + 8784 T - 101412412 p T^{2} - 21402247486176 T^{3} + 6705736084500736186 T^{4} + \)\(15\!\cdots\!00\)\( T^{5} + \)\(17\!\cdots\!40\)\( p T^{6} - \)\(26\!\cdots\!60\)\( T^{7} - \)\(79\!\cdots\!65\)\( T^{8} - \)\(26\!\cdots\!60\)\( p^{9} T^{9} + \)\(17\!\cdots\!40\)\( p^{19} T^{10} + \)\(15\!\cdots\!00\)\( p^{27} T^{11} + 6705736084500736186 p^{36} T^{12} - 21402247486176 p^{45} T^{13} - 101412412 p^{55} T^{14} + 8784 p^{63} T^{15} + p^{72} T^{16} \) | |
13 | \( 1 - 162556 T - 4223324994 T^{2} + 1896098353352872 T^{3} - 85260860756219808295 T^{4} + \)\(94\!\cdots\!40\)\( T^{5} - \)\(14\!\cdots\!42\)\( T^{6} - \)\(92\!\cdots\!12\)\( p T^{7} + \)\(21\!\cdots\!24\)\( p^{2} T^{8} - \)\(92\!\cdots\!12\)\( p^{10} T^{9} - \)\(14\!\cdots\!42\)\( p^{18} T^{10} + \)\(94\!\cdots\!40\)\( p^{27} T^{11} - 85260860756219808295 p^{36} T^{12} + 1896098353352872 p^{45} T^{13} - 4223324994 p^{54} T^{14} - 162556 p^{63} T^{15} + p^{72} T^{16} \) | |
17 | \( ( 1 + 538080 T + 323513900798 T^{2} + 114203532371811840 T^{3} + \)\(41\!\cdots\!35\)\( T^{4} + 114203532371811840 p^{9} T^{5} + 323513900798 p^{18} T^{6} + 538080 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
19 | \( ( 1 + 8224 T + 530682376996 T^{2} + 34455495884405920 T^{3} + \)\(19\!\cdots\!10\)\( T^{4} + 34455495884405920 p^{9} T^{5} + 530682376996 p^{18} T^{6} + 8224 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
23 | \( 1 - 2594736 T - 1409342638820 T^{2} + 4698748269105556896 T^{3} + \)\(43\!\cdots\!46\)\( p T^{4} - \)\(10\!\cdots\!00\)\( T^{5} - \)\(25\!\cdots\!76\)\( T^{6} + \)\(17\!\cdots\!68\)\( T^{7} + \)\(68\!\cdots\!55\)\( T^{8} + \)\(17\!\cdots\!68\)\( p^{9} T^{9} - \)\(25\!\cdots\!76\)\( p^{18} T^{10} - \)\(10\!\cdots\!00\)\( p^{27} T^{11} + \)\(43\!\cdots\!46\)\( p^{37} T^{12} + 4698748269105556896 p^{45} T^{13} - 1409342638820 p^{54} T^{14} - 2594736 p^{63} T^{15} + p^{72} T^{16} \) | |
29 | \( 1 - 3232656 T - 22806359737718 T^{2} + \)\(14\!\cdots\!24\)\( T^{3} + \)\(15\!\cdots\!45\)\( T^{4} - \)\(23\!\cdots\!28\)\( T^{5} + \)\(50\!\cdots\!70\)\( T^{6} + \)\(18\!\cdots\!32\)\( T^{7} - \)\(12\!\cdots\!64\)\( T^{8} + \)\(18\!\cdots\!32\)\( p^{9} T^{9} + \)\(50\!\cdots\!70\)\( p^{18} T^{10} - \)\(23\!\cdots\!28\)\( p^{27} T^{11} + \)\(15\!\cdots\!45\)\( p^{36} T^{12} + \)\(14\!\cdots\!24\)\( p^{45} T^{13} - 22806359737718 p^{54} T^{14} - 3232656 p^{63} T^{15} + p^{72} T^{16} \) | |
31 | \( 1 + 3482576 T - 84666387090492 T^{2} - \)\(18\!\cdots\!08\)\( T^{3} + \)\(47\!\cdots\!94\)\( T^{4} + \)\(60\!\cdots\!48\)\( T^{5} - \)\(18\!\cdots\!84\)\( T^{6} - \)\(61\!\cdots\!08\)\( T^{7} + \)\(55\!\cdots\!47\)\( T^{8} - \)\(61\!\cdots\!08\)\( p^{9} T^{9} - \)\(18\!\cdots\!84\)\( p^{18} T^{10} + \)\(60\!\cdots\!48\)\( p^{27} T^{11} + \)\(47\!\cdots\!94\)\( p^{36} T^{12} - \)\(18\!\cdots\!08\)\( p^{45} T^{13} - 84666387090492 p^{54} T^{14} + 3482576 p^{63} T^{15} + p^{72} T^{16} \) | |
37 | \( ( 1 + 2487892 T + 426737747557378 T^{2} + \)\(84\!\cdots\!80\)\( T^{3} + \)\(78\!\cdots\!75\)\( T^{4} + \)\(84\!\cdots\!80\)\( p^{9} T^{5} + 426737747557378 p^{18} T^{6} + 2487892 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
41 | \( 1 - 34657152 T - 344666917407812 T^{2} + \)\(14\!\cdots\!12\)\( T^{3} + \)\(42\!\cdots\!50\)\( T^{4} - \)\(83\!\cdots\!96\)\( T^{5} - \)\(13\!\cdots\!20\)\( T^{6} + \)\(39\!\cdots\!96\)\( T^{7} + \)\(73\!\cdots\!51\)\( T^{8} + \)\(39\!\cdots\!96\)\( p^{9} T^{9} - \)\(13\!\cdots\!20\)\( p^{18} T^{10} - \)\(83\!\cdots\!96\)\( p^{27} T^{11} + \)\(42\!\cdots\!50\)\( p^{36} T^{12} + \)\(14\!\cdots\!12\)\( p^{45} T^{13} - 344666917407812 p^{54} T^{14} - 34657152 p^{63} T^{15} + p^{72} T^{16} \) | |
43 | \( 1 - 41410000 T - 285852612011364 T^{2} + \)\(26\!\cdots\!68\)\( T^{3} + \)\(27\!\cdots\!78\)\( T^{4} - \)\(14\!\cdots\!88\)\( T^{5} - \)\(11\!\cdots\!24\)\( T^{6} + \)\(29\!\cdots\!24\)\( T^{7} + \)\(49\!\cdots\!11\)\( T^{8} + \)\(29\!\cdots\!24\)\( p^{9} T^{9} - \)\(11\!\cdots\!24\)\( p^{18} T^{10} - \)\(14\!\cdots\!88\)\( p^{27} T^{11} + \)\(27\!\cdots\!78\)\( p^{36} T^{12} + \)\(26\!\cdots\!68\)\( p^{45} T^{13} - 285852612011364 p^{54} T^{14} - 41410000 p^{63} T^{15} + p^{72} T^{16} \) | |
47 | \( 1 - 40558848 T - 467455196135516 T^{2} - \)\(74\!\cdots\!40\)\( T^{3} + \)\(35\!\cdots\!22\)\( T^{4} + \)\(40\!\cdots\!88\)\( T^{5} + \)\(35\!\cdots\!40\)\( T^{6} - \)\(14\!\cdots\!44\)\( T^{7} - \)\(20\!\cdots\!13\)\( T^{8} - \)\(14\!\cdots\!44\)\( p^{9} T^{9} + \)\(35\!\cdots\!40\)\( p^{18} T^{10} + \)\(40\!\cdots\!88\)\( p^{27} T^{11} + \)\(35\!\cdots\!22\)\( p^{36} T^{12} - \)\(74\!\cdots\!40\)\( p^{45} T^{13} - 467455196135516 p^{54} T^{14} - 40558848 p^{63} T^{15} + p^{72} T^{16} \) | |
53 | \( ( 1 + 8421024 T + 3661990464011540 T^{2} - \)\(23\!\cdots\!52\)\( T^{3} + \)\(24\!\cdots\!46\)\( T^{4} - \)\(23\!\cdots\!52\)\( p^{9} T^{5} + 3661990464011540 p^{18} T^{6} + 8421024 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
59 | \( 1 - 26843328 T - 15233430258833900 T^{2} + \)\(63\!\cdots\!80\)\( T^{3} + \)\(10\!\cdots\!98\)\( T^{4} - \)\(57\!\cdots\!08\)\( T^{5} + \)\(37\!\cdots\!72\)\( T^{6} + \)\(24\!\cdots\!48\)\( T^{7} - \)\(75\!\cdots\!09\)\( T^{8} + \)\(24\!\cdots\!48\)\( p^{9} T^{9} + \)\(37\!\cdots\!72\)\( p^{18} T^{10} - \)\(57\!\cdots\!08\)\( p^{27} T^{11} + \)\(10\!\cdots\!98\)\( p^{36} T^{12} + \)\(63\!\cdots\!80\)\( p^{45} T^{13} - 15233430258833900 p^{54} T^{14} - 26843328 p^{63} T^{15} + p^{72} T^{16} \) | |
61 | \( 1 - 111504484 T - 32808147451141410 T^{2} + \)\(27\!\cdots\!12\)\( T^{3} + \)\(82\!\cdots\!01\)\( T^{4} - \)\(45\!\cdots\!92\)\( T^{5} - \)\(13\!\cdots\!54\)\( T^{6} + \)\(19\!\cdots\!24\)\( T^{7} + \)\(18\!\cdots\!20\)\( T^{8} + \)\(19\!\cdots\!24\)\( p^{9} T^{9} - \)\(13\!\cdots\!54\)\( p^{18} T^{10} - \)\(45\!\cdots\!92\)\( p^{27} T^{11} + \)\(82\!\cdots\!01\)\( p^{36} T^{12} + \)\(27\!\cdots\!12\)\( p^{45} T^{13} - 32808147451141410 p^{54} T^{14} - 111504484 p^{63} T^{15} + p^{72} T^{16} \) | |
67 | \( 1 - 208064512 T - 25688393210852964 T^{2} + \)\(37\!\cdots\!24\)\( T^{3} + \)\(78\!\cdots\!74\)\( T^{4} - \)\(38\!\cdots\!20\)\( T^{5} - \)\(10\!\cdots\!56\)\( T^{6} + \)\(30\!\cdots\!80\)\( T^{7} - \)\(21\!\cdots\!33\)\( T^{8} + \)\(30\!\cdots\!80\)\( p^{9} T^{9} - \)\(10\!\cdots\!56\)\( p^{18} T^{10} - \)\(38\!\cdots\!20\)\( p^{27} T^{11} + \)\(78\!\cdots\!74\)\( p^{36} T^{12} + \)\(37\!\cdots\!24\)\( p^{45} T^{13} - 25688393210852964 p^{54} T^{14} - 208064512 p^{63} T^{15} + p^{72} T^{16} \) | |
71 | \( ( 1 + 356008272 T + 129232988292852932 T^{2} + \)\(22\!\cdots\!60\)\( T^{3} + \)\(62\!\cdots\!14\)\( T^{4} + \)\(22\!\cdots\!60\)\( p^{9} T^{5} + 129232988292852932 p^{18} T^{6} + 356008272 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
73 | \( ( 1 + 37126108 T + 123395685184922122 T^{2} + \)\(20\!\cdots\!88\)\( T^{3} + \)\(73\!\cdots\!35\)\( T^{4} + \)\(20\!\cdots\!88\)\( p^{9} T^{5} + 123395685184922122 p^{18} T^{6} + 37126108 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
79 | \( 1 - 645134848 T + 9399830430280620 T^{2} + \)\(10\!\cdots\!80\)\( T^{3} - \)\(16\!\cdots\!02\)\( T^{4} - \)\(11\!\cdots\!48\)\( T^{5} + \)\(40\!\cdots\!32\)\( T^{6} + \)\(98\!\cdots\!48\)\( T^{7} - \)\(84\!\cdots\!49\)\( T^{8} + \)\(98\!\cdots\!48\)\( p^{9} T^{9} + \)\(40\!\cdots\!32\)\( p^{18} T^{10} - \)\(11\!\cdots\!48\)\( p^{27} T^{11} - \)\(16\!\cdots\!02\)\( p^{36} T^{12} + \)\(10\!\cdots\!80\)\( p^{45} T^{13} + 9399830430280620 p^{54} T^{14} - 645134848 p^{63} T^{15} + p^{72} T^{16} \) | |
83 | \( 1 - 1019036256 T + 95168392525582708 T^{2} + \)\(13\!\cdots\!36\)\( T^{3} + \)\(50\!\cdots\!10\)\( T^{4} - \)\(52\!\cdots\!68\)\( T^{5} + \)\(18\!\cdots\!36\)\( T^{6} + \)\(12\!\cdots\!88\)\( T^{7} + \)\(26\!\cdots\!39\)\( T^{8} + \)\(12\!\cdots\!88\)\( p^{9} T^{9} + \)\(18\!\cdots\!36\)\( p^{18} T^{10} - \)\(52\!\cdots\!68\)\( p^{27} T^{11} + \)\(50\!\cdots\!10\)\( p^{36} T^{12} + \)\(13\!\cdots\!36\)\( p^{45} T^{13} + 95168392525582708 p^{54} T^{14} - 1019036256 p^{63} T^{15} + p^{72} T^{16} \) | |
89 | \( ( 1 + 1548192768 T + 2232987824828793326 T^{2} + \)\(18\!\cdots\!88\)\( T^{3} + \)\(13\!\cdots\!07\)\( T^{4} + \)\(18\!\cdots\!88\)\( p^{9} T^{5} + 2232987824828793326 p^{18} T^{6} + 1548192768 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
97 | \( 1 + 1112014568 T + 342623331593914980 T^{2} + \)\(30\!\cdots\!56\)\( T^{3} + \)\(30\!\cdots\!26\)\( T^{4} + \)\(76\!\cdots\!52\)\( T^{5} + \)\(39\!\cdots\!64\)\( T^{6} + \)\(35\!\cdots\!92\)\( T^{7} + \)\(71\!\cdots\!87\)\( T^{8} + \)\(35\!\cdots\!92\)\( p^{9} T^{9} + \)\(39\!\cdots\!64\)\( p^{18} T^{10} + \)\(76\!\cdots\!52\)\( p^{27} T^{11} + \)\(30\!\cdots\!26\)\( p^{36} T^{12} + \)\(30\!\cdots\!56\)\( p^{45} T^{13} + 342623331593914980 p^{54} T^{14} + 1112014568 p^{63} T^{15} + p^{72} T^{16} \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−4.16606078461648721251872845424, −4.05172679062947658027841458282, −3.82019122086838366970859339888, −3.69332977808650935981287735918, −3.45839094572124227000344369380, −3.09976645554559992243127505814, −3.04172477931181410005125815237, −3.01439503706516172547316537182, −2.66296608920855403278730439513, −2.48835513646647993078168813343, −2.46910125885670306265848102369, −2.29042005552262215598002092098, −2.02256948994040536030836135932, −1.95390473066430518794073575280, −1.77107104684962718770712463671, −1.64219509394588459173954647167, −1.28223288519556932366206987087, −1.24376284688662363738174068697, −0.923271722276858538008707399536, −0.870407705614136115378425832251, −0.73274743581863149536332213738, −0.69774058875424132366907155065, −0.45871632893295238251287332538, −0.43675728661961285983450939240, −0.15104525046185539235491898617, 0.15104525046185539235491898617, 0.43675728661961285983450939240, 0.45871632893295238251287332538, 0.69774058875424132366907155065, 0.73274743581863149536332213738, 0.870407705614136115378425832251, 0.923271722276858538008707399536, 1.24376284688662363738174068697, 1.28223288519556932366206987087, 1.64219509394588459173954647167, 1.77107104684962718770712463671, 1.95390473066430518794073575280, 2.02256948994040536030836135932, 2.29042005552262215598002092098, 2.46910125885670306265848102369, 2.48835513646647993078168813343, 2.66296608920855403278730439513, 3.01439503706516172547316537182, 3.04172477931181410005125815237, 3.09976645554559992243127505814, 3.45839094572124227000344369380, 3.69332977808650935981287735918, 3.82019122086838366970859339888, 4.05172679062947658027841458282, 4.16606078461648721251872845424