Dirichlet series
L(s) = 1 | + 64·2-s + 1.53e3·4-s − 1.96e3·5-s − 4.49e3·7-s − 1.25e5·10-s + 8.78e3·11-s + 1.62e5·13-s − 2.87e5·14-s − 9.83e5·16-s + 1.07e6·17-s − 1.64e4·19-s − 3.02e6·20-s + 5.62e5·22-s − 2.59e6·23-s + 4.90e6·25-s + 1.04e7·26-s − 6.90e6·28-s − 3.23e6·29-s − 3.48e6·31-s − 2.51e7·32-s + 6.88e7·34-s + 8.84e6·35-s − 4.97e6·37-s − 1.05e6·38-s − 3.46e7·41-s + 4.14e7·43-s + 1.34e7·44-s + ⋯ |
L(s) = 1 | + 2.82·2-s + 3·4-s − 1.40·5-s − 0.707·7-s − 3.98·10-s + 0.180·11-s + 1.57·13-s − 2.00·14-s − 3.75·16-s + 3.12·17-s − 0.0289·19-s − 4.22·20-s + 0.511·22-s − 1.93·23-s + 2.51·25-s + 4.46·26-s − 2.12·28-s − 0.848·29-s − 0.677·31-s − 4.24·32-s + 8.83·34-s + 0.996·35-s − 0.436·37-s − 0.0818·38-s − 1.91·41-s + 1.84·43-s + 0.542·44-s + ⋯ |
Functional equation
Invariants
Degree: | \(16\) |
Conductor: | \(2^{8} \cdot 3^{32}\) |
Sign: | $1$ |
Analytic conductor: | \(2.34865\times 10^{15}\) |
Root analytic conductor: | \(9.13432\) |
Motivic weight: | \(9\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((16,\ 2^{8} \cdot 3^{32} ,\ ( \ : [9/2]^{8} ),\ 1 )\) |
Particular Values
\(L(5)\) | \(\approx\) | \(0.2548403481\) |
\(L(\frac12)\) | \(\approx\) | \(0.2548403481\) |
\(L(\frac{11}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 2 | \( ( 1 - p^{4} T + p^{8} T^{2} )^{4} \) |
3 | \( 1 \) | |
good | 5 | \( 1 + 1968 T - 1033142 T^{2} - 5161447392 T^{3} - 5179172183639 T^{4} - 1384901732162592 p T^{5} - 65069990362238686 p^{3} T^{6} + \)\(14\!\cdots\!72\)\( p^{3} T^{7} + \)\(94\!\cdots\!56\)\( p^{4} T^{8} + \)\(14\!\cdots\!72\)\( p^{12} T^{9} - 65069990362238686 p^{21} T^{10} - 1384901732162592 p^{28} T^{11} - 5179172183639 p^{36} T^{12} - 5161447392 p^{45} T^{13} - 1033142 p^{54} T^{14} + 1968 p^{63} T^{15} + p^{72} T^{16} \) |
7 | \( 1 + 4496 T - 134312340 T^{2} - 322254528992 T^{3} + 12375797650597322 T^{4} + 2317622011382359056 p T^{5} - \)\(15\!\cdots\!96\)\( p^{2} T^{6} - \)\(66\!\cdots\!28\)\( p^{3} T^{7} + \)\(14\!\cdots\!19\)\( p^{4} T^{8} - \)\(66\!\cdots\!28\)\( p^{12} T^{9} - \)\(15\!\cdots\!96\)\( p^{20} T^{10} + 2317622011382359056 p^{28} T^{11} + 12375797650597322 p^{36} T^{12} - 322254528992 p^{45} T^{13} - 134312340 p^{54} T^{14} + 4496 p^{63} T^{15} + p^{72} T^{16} \) | |
11 | \( 1 - 8784 T - 101412412 p T^{2} + 21402247486176 T^{3} + 6705736084500736186 T^{4} - \)\(15\!\cdots\!00\)\( T^{5} + \)\(17\!\cdots\!40\)\( p T^{6} + \)\(26\!\cdots\!60\)\( T^{7} - \)\(79\!\cdots\!65\)\( T^{8} + \)\(26\!\cdots\!60\)\( p^{9} T^{9} + \)\(17\!\cdots\!40\)\( p^{19} T^{10} - \)\(15\!\cdots\!00\)\( p^{27} T^{11} + 6705736084500736186 p^{36} T^{12} + 21402247486176 p^{45} T^{13} - 101412412 p^{55} T^{14} - 8784 p^{63} T^{15} + p^{72} T^{16} \) | |
13 | \( 1 - 162556 T - 4223324994 T^{2} + 1896098353352872 T^{3} - 85260860756219808295 T^{4} + \)\(94\!\cdots\!40\)\( T^{5} - \)\(14\!\cdots\!42\)\( T^{6} - \)\(92\!\cdots\!12\)\( p T^{7} + \)\(21\!\cdots\!24\)\( p^{2} T^{8} - \)\(92\!\cdots\!12\)\( p^{10} T^{9} - \)\(14\!\cdots\!42\)\( p^{18} T^{10} + \)\(94\!\cdots\!40\)\( p^{27} T^{11} - 85260860756219808295 p^{36} T^{12} + 1896098353352872 p^{45} T^{13} - 4223324994 p^{54} T^{14} - 162556 p^{63} T^{15} + p^{72} T^{16} \) | |
17 | \( ( 1 - 538080 T + 323513900798 T^{2} - 114203532371811840 T^{3} + \)\(41\!\cdots\!35\)\( T^{4} - 114203532371811840 p^{9} T^{5} + 323513900798 p^{18} T^{6} - 538080 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
19 | \( ( 1 + 8224 T + 530682376996 T^{2} + 34455495884405920 T^{3} + \)\(19\!\cdots\!10\)\( T^{4} + 34455495884405920 p^{9} T^{5} + 530682376996 p^{18} T^{6} + 8224 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
23 | \( 1 + 2594736 T - 1409342638820 T^{2} - 4698748269105556896 T^{3} + \)\(43\!\cdots\!46\)\( p T^{4} + \)\(10\!\cdots\!00\)\( T^{5} - \)\(25\!\cdots\!76\)\( T^{6} - \)\(17\!\cdots\!68\)\( T^{7} + \)\(68\!\cdots\!55\)\( T^{8} - \)\(17\!\cdots\!68\)\( p^{9} T^{9} - \)\(25\!\cdots\!76\)\( p^{18} T^{10} + \)\(10\!\cdots\!00\)\( p^{27} T^{11} + \)\(43\!\cdots\!46\)\( p^{37} T^{12} - 4698748269105556896 p^{45} T^{13} - 1409342638820 p^{54} T^{14} + 2594736 p^{63} T^{15} + p^{72} T^{16} \) | |
29 | \( 1 + 3232656 T - 22806359737718 T^{2} - \)\(14\!\cdots\!24\)\( T^{3} + \)\(15\!\cdots\!45\)\( T^{4} + \)\(23\!\cdots\!28\)\( T^{5} + \)\(50\!\cdots\!70\)\( T^{6} - \)\(18\!\cdots\!32\)\( T^{7} - \)\(12\!\cdots\!64\)\( T^{8} - \)\(18\!\cdots\!32\)\( p^{9} T^{9} + \)\(50\!\cdots\!70\)\( p^{18} T^{10} + \)\(23\!\cdots\!28\)\( p^{27} T^{11} + \)\(15\!\cdots\!45\)\( p^{36} T^{12} - \)\(14\!\cdots\!24\)\( p^{45} T^{13} - 22806359737718 p^{54} T^{14} + 3232656 p^{63} T^{15} + p^{72} T^{16} \) | |
31 | \( 1 + 3482576 T - 84666387090492 T^{2} - \)\(18\!\cdots\!08\)\( T^{3} + \)\(47\!\cdots\!94\)\( T^{4} + \)\(60\!\cdots\!48\)\( T^{5} - \)\(18\!\cdots\!84\)\( T^{6} - \)\(61\!\cdots\!08\)\( T^{7} + \)\(55\!\cdots\!47\)\( T^{8} - \)\(61\!\cdots\!08\)\( p^{9} T^{9} - \)\(18\!\cdots\!84\)\( p^{18} T^{10} + \)\(60\!\cdots\!48\)\( p^{27} T^{11} + \)\(47\!\cdots\!94\)\( p^{36} T^{12} - \)\(18\!\cdots\!08\)\( p^{45} T^{13} - 84666387090492 p^{54} T^{14} + 3482576 p^{63} T^{15} + p^{72} T^{16} \) | |
37 | \( ( 1 + 2487892 T + 426737747557378 T^{2} + \)\(84\!\cdots\!80\)\( T^{3} + \)\(78\!\cdots\!75\)\( T^{4} + \)\(84\!\cdots\!80\)\( p^{9} T^{5} + 426737747557378 p^{18} T^{6} + 2487892 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
41 | \( 1 + 34657152 T - 344666917407812 T^{2} - \)\(14\!\cdots\!12\)\( T^{3} + \)\(42\!\cdots\!50\)\( T^{4} + \)\(83\!\cdots\!96\)\( T^{5} - \)\(13\!\cdots\!20\)\( T^{6} - \)\(39\!\cdots\!96\)\( T^{7} + \)\(73\!\cdots\!51\)\( T^{8} - \)\(39\!\cdots\!96\)\( p^{9} T^{9} - \)\(13\!\cdots\!20\)\( p^{18} T^{10} + \)\(83\!\cdots\!96\)\( p^{27} T^{11} + \)\(42\!\cdots\!50\)\( p^{36} T^{12} - \)\(14\!\cdots\!12\)\( p^{45} T^{13} - 344666917407812 p^{54} T^{14} + 34657152 p^{63} T^{15} + p^{72} T^{16} \) | |
43 | \( 1 - 41410000 T - 285852612011364 T^{2} + \)\(26\!\cdots\!68\)\( T^{3} + \)\(27\!\cdots\!78\)\( T^{4} - \)\(14\!\cdots\!88\)\( T^{5} - \)\(11\!\cdots\!24\)\( T^{6} + \)\(29\!\cdots\!24\)\( T^{7} + \)\(49\!\cdots\!11\)\( T^{8} + \)\(29\!\cdots\!24\)\( p^{9} T^{9} - \)\(11\!\cdots\!24\)\( p^{18} T^{10} - \)\(14\!\cdots\!88\)\( p^{27} T^{11} + \)\(27\!\cdots\!78\)\( p^{36} T^{12} + \)\(26\!\cdots\!68\)\( p^{45} T^{13} - 285852612011364 p^{54} T^{14} - 41410000 p^{63} T^{15} + p^{72} T^{16} \) | |
47 | \( 1 + 40558848 T - 467455196135516 T^{2} + \)\(74\!\cdots\!40\)\( T^{3} + \)\(35\!\cdots\!22\)\( T^{4} - \)\(40\!\cdots\!88\)\( T^{5} + \)\(35\!\cdots\!40\)\( T^{6} + \)\(14\!\cdots\!44\)\( T^{7} - \)\(20\!\cdots\!13\)\( T^{8} + \)\(14\!\cdots\!44\)\( p^{9} T^{9} + \)\(35\!\cdots\!40\)\( p^{18} T^{10} - \)\(40\!\cdots\!88\)\( p^{27} T^{11} + \)\(35\!\cdots\!22\)\( p^{36} T^{12} + \)\(74\!\cdots\!40\)\( p^{45} T^{13} - 467455196135516 p^{54} T^{14} + 40558848 p^{63} T^{15} + p^{72} T^{16} \) | |
53 | \( ( 1 - 8421024 T + 3661990464011540 T^{2} + \)\(23\!\cdots\!52\)\( T^{3} + \)\(24\!\cdots\!46\)\( T^{4} + \)\(23\!\cdots\!52\)\( p^{9} T^{5} + 3661990464011540 p^{18} T^{6} - 8421024 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
59 | \( 1 + 26843328 T - 15233430258833900 T^{2} - \)\(63\!\cdots\!80\)\( T^{3} + \)\(10\!\cdots\!98\)\( T^{4} + \)\(57\!\cdots\!08\)\( T^{5} + \)\(37\!\cdots\!72\)\( T^{6} - \)\(24\!\cdots\!48\)\( T^{7} - \)\(75\!\cdots\!09\)\( T^{8} - \)\(24\!\cdots\!48\)\( p^{9} T^{9} + \)\(37\!\cdots\!72\)\( p^{18} T^{10} + \)\(57\!\cdots\!08\)\( p^{27} T^{11} + \)\(10\!\cdots\!98\)\( p^{36} T^{12} - \)\(63\!\cdots\!80\)\( p^{45} T^{13} - 15233430258833900 p^{54} T^{14} + 26843328 p^{63} T^{15} + p^{72} T^{16} \) | |
61 | \( 1 - 111504484 T - 32808147451141410 T^{2} + \)\(27\!\cdots\!12\)\( T^{3} + \)\(82\!\cdots\!01\)\( T^{4} - \)\(45\!\cdots\!92\)\( T^{5} - \)\(13\!\cdots\!54\)\( T^{6} + \)\(19\!\cdots\!24\)\( T^{7} + \)\(18\!\cdots\!20\)\( T^{8} + \)\(19\!\cdots\!24\)\( p^{9} T^{9} - \)\(13\!\cdots\!54\)\( p^{18} T^{10} - \)\(45\!\cdots\!92\)\( p^{27} T^{11} + \)\(82\!\cdots\!01\)\( p^{36} T^{12} + \)\(27\!\cdots\!12\)\( p^{45} T^{13} - 32808147451141410 p^{54} T^{14} - 111504484 p^{63} T^{15} + p^{72} T^{16} \) | |
67 | \( 1 - 208064512 T - 25688393210852964 T^{2} + \)\(37\!\cdots\!24\)\( T^{3} + \)\(78\!\cdots\!74\)\( T^{4} - \)\(38\!\cdots\!20\)\( T^{5} - \)\(10\!\cdots\!56\)\( T^{6} + \)\(30\!\cdots\!80\)\( T^{7} - \)\(21\!\cdots\!33\)\( T^{8} + \)\(30\!\cdots\!80\)\( p^{9} T^{9} - \)\(10\!\cdots\!56\)\( p^{18} T^{10} - \)\(38\!\cdots\!20\)\( p^{27} T^{11} + \)\(78\!\cdots\!74\)\( p^{36} T^{12} + \)\(37\!\cdots\!24\)\( p^{45} T^{13} - 25688393210852964 p^{54} T^{14} - 208064512 p^{63} T^{15} + p^{72} T^{16} \) | |
71 | \( ( 1 - 356008272 T + 129232988292852932 T^{2} - \)\(22\!\cdots\!60\)\( T^{3} + \)\(62\!\cdots\!14\)\( T^{4} - \)\(22\!\cdots\!60\)\( p^{9} T^{5} + 129232988292852932 p^{18} T^{6} - 356008272 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
73 | \( ( 1 + 37126108 T + 123395685184922122 T^{2} + \)\(20\!\cdots\!88\)\( T^{3} + \)\(73\!\cdots\!35\)\( T^{4} + \)\(20\!\cdots\!88\)\( p^{9} T^{5} + 123395685184922122 p^{18} T^{6} + 37126108 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
79 | \( 1 - 645134848 T + 9399830430280620 T^{2} + \)\(10\!\cdots\!80\)\( T^{3} - \)\(16\!\cdots\!02\)\( T^{4} - \)\(11\!\cdots\!48\)\( T^{5} + \)\(40\!\cdots\!32\)\( T^{6} + \)\(98\!\cdots\!48\)\( T^{7} - \)\(84\!\cdots\!49\)\( T^{8} + \)\(98\!\cdots\!48\)\( p^{9} T^{9} + \)\(40\!\cdots\!32\)\( p^{18} T^{10} - \)\(11\!\cdots\!48\)\( p^{27} T^{11} - \)\(16\!\cdots\!02\)\( p^{36} T^{12} + \)\(10\!\cdots\!80\)\( p^{45} T^{13} + 9399830430280620 p^{54} T^{14} - 645134848 p^{63} T^{15} + p^{72} T^{16} \) | |
83 | \( 1 + 1019036256 T + 95168392525582708 T^{2} - \)\(13\!\cdots\!36\)\( T^{3} + \)\(50\!\cdots\!10\)\( T^{4} + \)\(52\!\cdots\!68\)\( T^{5} + \)\(18\!\cdots\!36\)\( T^{6} - \)\(12\!\cdots\!88\)\( T^{7} + \)\(26\!\cdots\!39\)\( T^{8} - \)\(12\!\cdots\!88\)\( p^{9} T^{9} + \)\(18\!\cdots\!36\)\( p^{18} T^{10} + \)\(52\!\cdots\!68\)\( p^{27} T^{11} + \)\(50\!\cdots\!10\)\( p^{36} T^{12} - \)\(13\!\cdots\!36\)\( p^{45} T^{13} + 95168392525582708 p^{54} T^{14} + 1019036256 p^{63} T^{15} + p^{72} T^{16} \) | |
89 | \( ( 1 - 1548192768 T + 2232987824828793326 T^{2} - \)\(18\!\cdots\!88\)\( T^{3} + \)\(13\!\cdots\!07\)\( T^{4} - \)\(18\!\cdots\!88\)\( p^{9} T^{5} + 2232987824828793326 p^{18} T^{6} - 1548192768 p^{27} T^{7} + p^{36} T^{8} )^{2} \) | |
97 | \( 1 + 1112014568 T + 342623331593914980 T^{2} + \)\(30\!\cdots\!56\)\( T^{3} + \)\(30\!\cdots\!26\)\( T^{4} + \)\(76\!\cdots\!52\)\( T^{5} + \)\(39\!\cdots\!64\)\( T^{6} + \)\(35\!\cdots\!92\)\( T^{7} + \)\(71\!\cdots\!87\)\( T^{8} + \)\(35\!\cdots\!92\)\( p^{9} T^{9} + \)\(39\!\cdots\!64\)\( p^{18} T^{10} + \)\(76\!\cdots\!52\)\( p^{27} T^{11} + \)\(30\!\cdots\!26\)\( p^{36} T^{12} + \)\(30\!\cdots\!56\)\( p^{45} T^{13} + 342623331593914980 p^{54} T^{14} + 1112014568 p^{63} T^{15} + p^{72} T^{16} \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−4.00884319767341901252552174619, −3.97766683829142215351100000478, −3.74278841553253263335414889972, −3.69674651052323969280209227855, −3.53833232525003764810777157716, −3.46555111831441841758227096757, −3.44494996928361724288330296923, −3.25566675046672397803824562309, −3.14743961645948066740943486585, −2.86729513950782695003887611925, −2.68723231581122477184323334937, −2.31032269923550871309095072180, −2.29057780758764201354130379564, −2.19148739065103951509620169963, −2.04057436504225269847225481186, −1.89089694090311429217336964429, −1.32664560329949420973354226040, −1.23637038724789823419697216540, −1.08172427285536068796509499945, −1.02208693441847515108560841934, −0.891660160899874166420351228747, −0.69608595304856805013306712353, −0.46166164448600542165223358902, −0.24626439181398440953062097088, −0.01883763783510576609517979564, 0.01883763783510576609517979564, 0.24626439181398440953062097088, 0.46166164448600542165223358902, 0.69608595304856805013306712353, 0.891660160899874166420351228747, 1.02208693441847515108560841934, 1.08172427285536068796509499945, 1.23637038724789823419697216540, 1.32664560329949420973354226040, 1.89089694090311429217336964429, 2.04057436504225269847225481186, 2.19148739065103951509620169963, 2.29057780758764201354130379564, 2.31032269923550871309095072180, 2.68723231581122477184323334937, 2.86729513950782695003887611925, 3.14743961645948066740943486585, 3.25566675046672397803824562309, 3.44494996928361724288330296923, 3.46555111831441841758227096757, 3.53833232525003764810777157716, 3.69674651052323969280209227855, 3.74278841553253263335414889972, 3.97766683829142215351100000478, 4.00884319767341901252552174619