Properties

Label 16-162e8-1.1-c12e8-0-1
Degree $16$
Conductor $4.744\times 10^{17}$
Sign $1$
Analytic cond. $2.31028\times 10^{17}$
Root an. cond. $12.1682$
Motivic weight $12$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.09e3·4-s + 6.82e4·7-s − 7.34e6·13-s + 4.19e6·16-s + 2.40e7·19-s − 6.55e8·25-s + 2.79e8·28-s − 3.97e9·31-s + 1.08e10·37-s − 1.10e10·43-s + 3.20e10·49-s − 3.00e10·52-s + 1.75e11·61-s − 1.71e10·64-s − 8.80e10·67-s + 3.78e11·73-s + 9.85e10·76-s + 4.16e11·79-s − 5.01e11·91-s + 3.52e11·97-s − 2.68e12·100-s − 4.35e12·103-s + 1.68e12·109-s + 2.86e11·112-s − 1.01e13·121-s − 1.62e13·124-s + 127-s + ⋯
L(s)  = 1  + 4-s + 0.580·7-s − 1.52·13-s + 1/4·16-s + 0.511·19-s − 2.68·25-s + 0.580·28-s − 4.47·31-s + 4.23·37-s − 1.74·43-s + 2.31·49-s − 1.52·52-s + 3.40·61-s − 1/4·64-s − 0.973·67-s + 2.50·73-s + 0.511·76-s + 1.71·79-s − 0.882·91-s + 0.422·97-s − 2.68·100-s − 3.64·103-s + 1.00·109-s + 0.145·112-s − 3.23·121-s − 4.47·124-s + 0.296·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{32}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(13-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{32}\right)^{s/2} \, \Gamma_{\C}(s+6)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{32}\)
Sign: $1$
Analytic conductor: \(2.31028\times 10^{17}\)
Root analytic conductor: \(12.1682\)
Motivic weight: \(12\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{32} ,\ ( \ : [6]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(0.2346404233\)
\(L(\frac12)\) \(\approx\) \(0.2346404233\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - p^{11} T^{2} + p^{22} T^{4} )^{2} \)
3 \( 1 \)
good5 \( 1 + 26213812 p^{2} T^{2} + 331868663597194 p^{4} T^{4} + \)\(17\!\cdots\!92\)\( p^{8} T^{6} + \)\(82\!\cdots\!31\)\( p^{12} T^{8} + \)\(17\!\cdots\!92\)\( p^{32} T^{10} + 331868663597194 p^{52} T^{12} + 26213812 p^{74} T^{14} + p^{96} T^{16} \)
7 \( ( 1 - 34142 T - 14255240543 T^{2} + 59805359574670 p T^{3} + 614060859885333316 p^{2} T^{4} + 59805359574670 p^{13} T^{5} - 14255240543 p^{24} T^{6} - 34142 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
11 \( 1 + 83824141492 p^{2} T^{2} + \)\(39\!\cdots\!82\)\( p^{4} T^{4} + \)\(14\!\cdots\!60\)\( p^{6} T^{6} + \)\(41\!\cdots\!59\)\( p^{8} T^{8} + \)\(14\!\cdots\!60\)\( p^{30} T^{10} + \)\(39\!\cdots\!82\)\( p^{52} T^{12} + 83824141492 p^{74} T^{14} + p^{96} T^{16} \)
13 \( ( 1 + 3671518 T + 7211123191297 T^{2} - \)\(14\!\cdots\!30\)\( T^{3} - \)\(81\!\cdots\!76\)\( T^{4} - \)\(14\!\cdots\!30\)\( p^{12} T^{5} + 7211123191297 p^{24} T^{6} + 3671518 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
17 \( ( 1 - 186365459324884 T^{2} + \)\(48\!\cdots\!42\)\( T^{4} - 186365459324884 p^{24} T^{6} + p^{48} T^{8} )^{2} \)
19 \( ( 1 - 6015298 T + 4387421763666339 T^{2} - 6015298 p^{12} T^{3} + p^{24} T^{4} )^{4} \)
23 \( 1 + 57623193481093204 T^{2} + \)\(15\!\cdots\!94\)\( T^{4} + \)\(46\!\cdots\!60\)\( T^{6} + \)\(13\!\cdots\!47\)\( T^{8} + \)\(46\!\cdots\!60\)\( p^{24} T^{10} + \)\(15\!\cdots\!94\)\( p^{48} T^{12} + 57623193481093204 p^{72} T^{14} + p^{96} T^{16} \)
29 \( 1 + 327209185044691204 T^{2} - \)\(12\!\cdots\!66\)\( T^{4} - \)\(57\!\cdots\!20\)\( T^{6} + \)\(25\!\cdots\!67\)\( T^{8} - \)\(57\!\cdots\!20\)\( p^{24} T^{10} - \)\(12\!\cdots\!66\)\( p^{48} T^{12} + 327209185044691204 p^{72} T^{14} + p^{96} T^{16} \)
31 \( ( 1 + 1986916972 T + 1482848302161475882 T^{2} + \)\(57\!\cdots\!60\)\( p T^{3} + \)\(24\!\cdots\!19\)\( p^{2} T^{4} + \)\(57\!\cdots\!60\)\( p^{13} T^{5} + 1482848302161475882 p^{24} T^{6} + 1986916972 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
37 \( ( 1 - 2714888110 T + 12010167810377243187 T^{2} - 2714888110 p^{12} T^{3} + p^{24} T^{4} )^{4} \)
41 \( 1 + 89666171762954058436 T^{2} + \)\(50\!\cdots\!86\)\( T^{4} + \)\(18\!\cdots\!68\)\( T^{6} + \)\(48\!\cdots\!23\)\( T^{8} + \)\(18\!\cdots\!68\)\( p^{24} T^{10} + \)\(50\!\cdots\!86\)\( p^{48} T^{12} + 89666171762954058436 p^{72} T^{14} + p^{96} T^{16} \)
43 \( ( 1 + 5512774252 T - 46487411842141900790 T^{2} - \)\(16\!\cdots\!16\)\( T^{3} + \)\(30\!\cdots\!31\)\( T^{4} - \)\(16\!\cdots\!16\)\( p^{12} T^{5} - 46487411842141900790 p^{24} T^{6} + 5512774252 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
47 \( 1 + \)\(35\!\cdots\!76\)\( T^{2} + \)\(67\!\cdots\!06\)\( T^{4} + \)\(10\!\cdots\!08\)\( T^{6} + \)\(14\!\cdots\!83\)\( T^{8} + \)\(10\!\cdots\!08\)\( p^{24} T^{10} + \)\(67\!\cdots\!06\)\( p^{48} T^{12} + \)\(35\!\cdots\!76\)\( p^{72} T^{14} + p^{96} T^{16} \)
53 \( ( 1 + \)\(53\!\cdots\!32\)\( T^{2} + \)\(52\!\cdots\!18\)\( T^{4} + \)\(53\!\cdots\!32\)\( p^{24} T^{6} + p^{48} T^{8} )^{2} \)
59 \( 1 + \)\(23\!\cdots\!60\)\( T^{2} + \)\(75\!\cdots\!78\)\( T^{4} - \)\(34\!\cdots\!00\)\( T^{6} - \)\(39\!\cdots\!37\)\( T^{8} - \)\(34\!\cdots\!00\)\( p^{24} T^{10} + \)\(75\!\cdots\!78\)\( p^{48} T^{12} + \)\(23\!\cdots\!60\)\( p^{72} T^{14} + p^{96} T^{16} \)
61 \( ( 1 - 87767669282 T + \)\(16\!\cdots\!37\)\( T^{2} - \)\(65\!\cdots\!90\)\( T^{3} + \)\(91\!\cdots\!24\)\( T^{4} - \)\(65\!\cdots\!90\)\( p^{12} T^{5} + \)\(16\!\cdots\!37\)\( p^{24} T^{6} - 87767669282 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
67 \( ( 1 + 44042724850 T - \)\(65\!\cdots\!83\)\( T^{2} - \)\(34\!\cdots\!50\)\( T^{3} - \)\(10\!\cdots\!32\)\( T^{4} - \)\(34\!\cdots\!50\)\( p^{12} T^{5} - \)\(65\!\cdots\!83\)\( p^{24} T^{6} + 44042724850 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
71 \( ( 1 - \)\(41\!\cdots\!08\)\( T^{2} + \)\(89\!\cdots\!78\)\( T^{4} - \)\(41\!\cdots\!08\)\( p^{24} T^{6} + p^{48} T^{8} )^{2} \)
73 \( ( 1 - 94702762174 T + \)\(33\!\cdots\!75\)\( T^{2} - 94702762174 p^{12} T^{3} + p^{24} T^{4} )^{4} \)
79 \( ( 1 - 208160642318 T - \)\(47\!\cdots\!75\)\( T^{2} + \)\(14\!\cdots\!94\)\( T^{3} - \)\(37\!\cdots\!64\)\( T^{4} + \)\(14\!\cdots\!94\)\( p^{12} T^{5} - \)\(47\!\cdots\!75\)\( p^{24} T^{6} - 208160642318 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
83 \( 1 + \)\(23\!\cdots\!24\)\( T^{2} + \)\(22\!\cdots\!74\)\( T^{4} + \)\(22\!\cdots\!40\)\( T^{6} + \)\(29\!\cdots\!67\)\( T^{8} + \)\(22\!\cdots\!40\)\( p^{24} T^{10} + \)\(22\!\cdots\!74\)\( p^{48} T^{12} + \)\(23\!\cdots\!24\)\( p^{72} T^{14} + p^{96} T^{16} \)
89 \( ( 1 - \)\(83\!\cdots\!20\)\( T^{2} + \)\(28\!\cdots\!82\)\( T^{4} - \)\(83\!\cdots\!20\)\( p^{24} T^{6} + p^{48} T^{8} )^{2} \)
97 \( ( 1 - 176152203122 T - \)\(96\!\cdots\!43\)\( T^{2} + \)\(69\!\cdots\!10\)\( T^{3} + \)\(48\!\cdots\!04\)\( T^{4} + \)\(69\!\cdots\!10\)\( p^{12} T^{5} - \)\(96\!\cdots\!43\)\( p^{24} T^{6} - 176152203122 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.80312260224076504217983631412, −3.78324345454265166939780155137, −3.47367372466640351428276785090, −3.23864744296179730414934920562, −3.11961300147669387750426102441, −3.00823761076878033495305927651, −2.99881016575929830943240862039, −2.44477815940087771142388648226, −2.42451891212778444079943185661, −2.29583275527815517349303638179, −2.25950753911267581211383581979, −2.11886919349970679287884212709, −2.05391442139081130188312516922, −2.03392179139912151990392606819, −1.78594490072493027710263599131, −1.43756221910242428193920547595, −1.17690244999554686253362022145, −1.17472127130855732882441392609, −1.10899783514109308031148424658, −0.994651682828196762215657289408, −0.76292966084875809951400785502, −0.61905218699799616560750825882, −0.15629730143518682526025110721, −0.12168003394888198800786021689, −0.091941464627681397408321308208, 0.091941464627681397408321308208, 0.12168003394888198800786021689, 0.15629730143518682526025110721, 0.61905218699799616560750825882, 0.76292966084875809951400785502, 0.994651682828196762215657289408, 1.10899783514109308031148424658, 1.17472127130855732882441392609, 1.17690244999554686253362022145, 1.43756221910242428193920547595, 1.78594490072493027710263599131, 2.03392179139912151990392606819, 2.05391442139081130188312516922, 2.11886919349970679287884212709, 2.25950753911267581211383581979, 2.29583275527815517349303638179, 2.42451891212778444079943185661, 2.44477815940087771142388648226, 2.99881016575929830943240862039, 3.00823761076878033495305927651, 3.11961300147669387750426102441, 3.23864744296179730414934920562, 3.47367372466640351428276785090, 3.78324345454265166939780155137, 3.80312260224076504217983631412

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.