# Properties

 Label 16-1560e8-1.1-c0e8-0-3 Degree $16$ Conductor $3.507\times 10^{25}$ Sign $1$ Analytic cond. $0.134975$ Root an. cond. $0.882349$ Motivic weight $0$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

# Learn more

## Dirichlet series

 L(s)  = 1 − 8·43-s − 2·81-s + 8·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯
 L(s)  = 1 − 8·43-s − 2·81-s + 8·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 5^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 5^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 Degree: $$16$$ Conductor: $$2^{24} \cdot 3^{8} \cdot 5^{8} \cdot 13^{8}$$ Sign: $1$ Analytic conductor: $$0.134975$$ Root analytic conductor: $$0.882349$$ Motivic weight: $$0$$ Rational: yes Arithmetic: yes Character: induced by $\chi_{1560} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(16,\ 2^{24} \cdot 3^{8} \cdot 5^{8} \cdot 13^{8} ,\ ( \ : [0]^{8} ),\ 1 )$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$0.8087434306$$ $$L(\frac12)$$ $$\approx$$ $$0.8087434306$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + T^{8}$$
3 $$( 1 + T^{4} )^{2}$$
5 $$1 + T^{8}$$
13 $$( 1 + T^{4} )^{2}$$
good7 $$( 1 + T^{4} )^{4}$$
11 $$( 1 + T^{8} )^{2}$$
17 $$( 1 + T^{4} )^{4}$$
19 $$( 1 + T^{2} )^{8}$$
23 $$( 1 + T^{4} )^{4}$$
29 $$( 1 - T )^{8}( 1 + T )^{8}$$
31 $$( 1 + T^{2} )^{8}$$
37 $$( 1 + T^{4} )^{4}$$
41 $$( 1 + T^{8} )^{2}$$
43 $$( 1 + T )^{8}( 1 + T^{2} )^{4}$$
47 $$( 1 + T^{8} )^{2}$$
53 $$( 1 + T^{4} )^{4}$$
59 $$( 1 + T^{8} )^{2}$$
61 $$( 1 + T^{4} )^{4}$$
67 $$( 1 + T^{4} )^{4}$$
71 $$( 1 + T^{8} )^{2}$$
73 $$( 1 + T^{4} )^{4}$$
79 $$( 1 + T^{4} )^{4}$$
83 $$( 1 + T^{8} )^{2}$$
89 $$( 1 + T^{8} )^{2}$$
97 $$( 1 + T^{4} )^{4}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−4.25516670060208125221873554307, −4.14203036302488975250800946887, −3.88045409738657295570573515846, −3.87742855825956738592218482077, −3.69885892486212747686099568515, −3.35543705022065715252031079188, −3.35002569589319896260021749475, −3.33201940402259172931230067895, −3.26046804360944876249085346011, −3.25363107092413021471558226961, −3.13590189295346853960459546997, −2.93842527631062362337481380029, −2.72010490759924103216621579801, −2.36763761140940274544485370535, −2.31629495240296061589942592590, −2.28423962520395933815014765202, −2.06247559250676054708604681768, −1.80732844300405348404991807916, −1.80554722541465229422251812685, −1.78325175309551369784117433868, −1.35983823549704205282968685797, −1.32573228339451575568794014122, −1.21099946057303335924408527341, −0.65481148062080092977819628280, −0.50116809066366794890095799437, 0.50116809066366794890095799437, 0.65481148062080092977819628280, 1.21099946057303335924408527341, 1.32573228339451575568794014122, 1.35983823549704205282968685797, 1.78325175309551369784117433868, 1.80554722541465229422251812685, 1.80732844300405348404991807916, 2.06247559250676054708604681768, 2.28423962520395933815014765202, 2.31629495240296061589942592590, 2.36763761140940274544485370535, 2.72010490759924103216621579801, 2.93842527631062362337481380029, 3.13590189295346853960459546997, 3.25363107092413021471558226961, 3.26046804360944876249085346011, 3.33201940402259172931230067895, 3.35002569589319896260021749475, 3.35543705022065715252031079188, 3.69885892486212747686099568515, 3.87742855825956738592218482077, 3.88045409738657295570573515846, 4.14203036302488975250800946887, 4.25516670060208125221873554307

## Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.