L(s) = 1 | − 3·2-s + 36·3-s + 34·4-s − 108·6-s − 75·8-s + 486·9-s − 402·11-s + 1.22e3·12-s − 924·13-s + 251·16-s + 276·17-s − 1.45e3·18-s + 510·19-s + 1.20e3·22-s − 6.90e3·23-s − 2.70e3·24-s + 4.84e3·25-s + 2.77e3·26-s + 1.08e3·29-s − 6.41e3·31-s − 2.34e3·32-s − 1.44e4·33-s − 828·34-s + 1.65e4·36-s − 1.52e4·37-s − 1.53e3·38-s − 3.32e4·39-s + ⋯ |
L(s) = 1 | − 0.530·2-s + 2.30·3-s + 1.06·4-s − 1.22·6-s − 0.414·8-s + 2·9-s − 1.00·11-s + 2.45·12-s − 1.51·13-s + 0.245·16-s + 0.231·17-s − 1.06·18-s + 0.324·19-s + 0.531·22-s − 2.71·23-s − 0.956·24-s + 1.54·25-s + 0.804·26-s + 0.238·29-s − 1.19·31-s − 0.404·32-s − 2.31·33-s − 0.122·34-s + 17/8·36-s − 1.83·37-s − 0.171·38-s − 3.50·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(31.66179147\) |
\(L(\frac12)\) |
\(\approx\) |
\(31.66179147\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( ( 1 - p^{2} T + p^{4} T^{2} )^{4} \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 3 T - 25 T^{2} - 51 p T^{3} + 259 p T^{4} + 1185 p^{2} T^{5} + 14739 p^{2} T^{6} + 1833 p^{3} T^{7} - 116575 p^{4} T^{8} + 1833 p^{8} T^{9} + 14739 p^{12} T^{10} + 1185 p^{17} T^{11} + 259 p^{21} T^{12} - 51 p^{26} T^{13} - 25 p^{30} T^{14} + 3 p^{35} T^{15} + p^{40} T^{16} \) |
| 5 | \( 1 - 4843 T^{2} - 24216 p^{2} T^{3} + 15905393 T^{4} + 96476544 p^{2} T^{5} + 149656086942 T^{6} - 275087633352 p^{2} T^{7} - 553760753377714 T^{8} - 275087633352 p^{7} T^{9} + 149656086942 p^{10} T^{10} + 96476544 p^{17} T^{11} + 15905393 p^{20} T^{12} - 24216 p^{27} T^{13} - 4843 p^{30} T^{14} + p^{40} T^{16} \) |
| 11 | \( 1 + 402 T - 244237 T^{2} - 23685786 T^{3} + 49988093357 T^{4} - 825774680136 p T^{5} - 7585190415099126 T^{6} + 907765850007682500 T^{7} + \)\(95\!\cdots\!06\)\( T^{8} + 907765850007682500 p^{5} T^{9} - 7585190415099126 p^{10} T^{10} - 825774680136 p^{16} T^{11} + 49988093357 p^{20} T^{12} - 23685786 p^{25} T^{13} - 244237 p^{30} T^{14} + 402 p^{35} T^{15} + p^{40} T^{16} \) |
| 13 | \( ( 1 + 462 T + 336749 T^{2} - 500754 T^{3} + 123849672672 T^{4} - 500754 p^{5} T^{5} + 336749 p^{10} T^{6} + 462 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 17 | \( 1 - 276 T - 4008500 T^{2} - 565843800 T^{3} + 9089867656090 T^{4} + 2604033925498692 T^{5} - 14267240611484004272 T^{6} - \)\(19\!\cdots\!84\)\( T^{7} + \)\(19\!\cdots\!07\)\( T^{8} - \)\(19\!\cdots\!84\)\( p^{5} T^{9} - 14267240611484004272 p^{10} T^{10} + 2604033925498692 p^{15} T^{11} + 9089867656090 p^{20} T^{12} - 565843800 p^{25} T^{13} - 4008500 p^{30} T^{14} - 276 p^{35} T^{15} + p^{40} T^{16} \) |
| 19 | \( 1 - 510 T - 3747425 T^{2} + 3937377630 T^{3} - 440016487199 T^{4} - 4115411338726080 T^{5} - 5704973911539330050 T^{6} - \)\(57\!\cdots\!00\)\( T^{7} + \)\(73\!\cdots\!50\)\( T^{8} - \)\(57\!\cdots\!00\)\( p^{5} T^{9} - 5704973911539330050 p^{10} T^{10} - 4115411338726080 p^{15} T^{11} - 440016487199 p^{20} T^{12} + 3937377630 p^{25} T^{13} - 3747425 p^{30} T^{14} - 510 p^{35} T^{15} + p^{40} T^{16} \) |
| 23 | \( 1 + 300 p T + 14742772 T^{2} - 5434854360 T^{3} - 64144356593702 T^{4} - 173260413144408420 T^{5} - \)\(23\!\cdots\!64\)\( T^{6} + \)\(19\!\cdots\!40\)\( T^{7} + \)\(99\!\cdots\!79\)\( T^{8} + \)\(19\!\cdots\!40\)\( p^{5} T^{9} - \)\(23\!\cdots\!64\)\( p^{10} T^{10} - 173260413144408420 p^{15} T^{11} - 64144356593702 p^{20} T^{12} - 5434854360 p^{25} T^{13} + 14742772 p^{30} T^{14} + 300 p^{36} T^{15} + p^{40} T^{16} \) |
| 29 | \( ( 1 - 540 T + 29394199 T^{2} + 29299685892 T^{3} + 772430149366772 T^{4} + 29299685892 p^{5} T^{5} + 29394199 p^{10} T^{6} - 540 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 31 | \( 1 + 6410 T - 55714636 T^{2} - 363334551632 T^{3} + 2227342403022119 T^{4} + 10547841526395999412 T^{5} - \)\(75\!\cdots\!84\)\( T^{6} - \)\(10\!\cdots\!10\)\( T^{7} + \)\(25\!\cdots\!76\)\( T^{8} - \)\(10\!\cdots\!10\)\( p^{5} T^{9} - \)\(75\!\cdots\!84\)\( p^{10} T^{10} + 10547841526395999412 p^{15} T^{11} + 2227342403022119 p^{20} T^{12} - 363334551632 p^{25} T^{13} - 55714636 p^{30} T^{14} + 6410 p^{35} T^{15} + p^{40} T^{16} \) |
| 37 | \( 1 + 15250 T + 2042879 T^{2} + 164587155110 T^{3} + 277810073119073 p T^{4} - 25563809512056184540 T^{5} - \)\(73\!\cdots\!82\)\( T^{6} - \)\(25\!\cdots\!80\)\( T^{7} - \)\(18\!\cdots\!10\)\( T^{8} - \)\(25\!\cdots\!80\)\( p^{5} T^{9} - \)\(73\!\cdots\!82\)\( p^{10} T^{10} - 25563809512056184540 p^{15} T^{11} + 277810073119073 p^{21} T^{12} + 164587155110 p^{25} T^{13} + 2042879 p^{30} T^{14} + 15250 p^{35} T^{15} + p^{40} T^{16} \) |
| 41 | \( ( 1 + 4308 T + 270683560 T^{2} + 2598901038204 T^{3} + 34018560333944366 T^{4} + 2598901038204 p^{5} T^{5} + 270683560 p^{10} T^{6} + 4308 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 43 | \( ( 1 - 29198 T + 787995265 T^{2} - 13076978932730 T^{3} + 187469286625894360 T^{4} - 13076978932730 p^{5} T^{5} + 787995265 p^{10} T^{6} - 29198 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 47 | \( 1 + 15060 T - 741226172 T^{2} - 6055210491384 T^{3} + 443152946335783210 T^{4} + \)\(21\!\cdots\!28\)\( T^{5} - \)\(15\!\cdots\!68\)\( T^{6} - \)\(13\!\cdots\!48\)\( T^{7} + \)\(43\!\cdots\!71\)\( T^{8} - \)\(13\!\cdots\!48\)\( p^{5} T^{9} - \)\(15\!\cdots\!68\)\( p^{10} T^{10} + \)\(21\!\cdots\!28\)\( p^{15} T^{11} + 443152946335783210 p^{20} T^{12} - 6055210491384 p^{25} T^{13} - 741226172 p^{30} T^{14} + 15060 p^{35} T^{15} + p^{40} T^{16} \) |
| 53 | \( 1 + 13692 T - 987403679 T^{2} - 2191455111540 T^{3} + 630826063270172605 T^{4} - \)\(25\!\cdots\!24\)\( T^{5} - \)\(29\!\cdots\!74\)\( T^{6} + \)\(54\!\cdots\!28\)\( T^{7} + \)\(11\!\cdots\!06\)\( T^{8} + \)\(54\!\cdots\!28\)\( p^{5} T^{9} - \)\(29\!\cdots\!74\)\( p^{10} T^{10} - \)\(25\!\cdots\!24\)\( p^{15} T^{11} + 630826063270172605 p^{20} T^{12} - 2191455111540 p^{25} T^{13} - 987403679 p^{30} T^{14} + 13692 p^{35} T^{15} + p^{40} T^{16} \) |
| 59 | \( 1 - 34830 T - 1834824737 T^{2} + 42321414019590 T^{3} + 3370913750880697081 T^{4} - \)\(47\!\cdots\!20\)\( T^{5} - \)\(33\!\cdots\!82\)\( T^{6} + \)\(90\!\cdots\!20\)\( T^{7} + \)\(30\!\cdots\!74\)\( T^{8} + \)\(90\!\cdots\!20\)\( p^{5} T^{9} - \)\(33\!\cdots\!82\)\( p^{10} T^{10} - \)\(47\!\cdots\!20\)\( p^{15} T^{11} + 3370913750880697081 p^{20} T^{12} + 42321414019590 p^{25} T^{13} - 1834824737 p^{30} T^{14} - 34830 p^{35} T^{15} + p^{40} T^{16} \) |
| 61 | \( 1 + 5364 T - 2817016532 T^{2} - 5158230942312 T^{3} + 4645398449535186778 T^{4} + \)\(12\!\cdots\!24\)\( T^{5} - \)\(55\!\cdots\!52\)\( T^{6} - \)\(26\!\cdots\!00\)\( T^{7} + \)\(52\!\cdots\!87\)\( T^{8} - \)\(26\!\cdots\!00\)\( p^{5} T^{9} - \)\(55\!\cdots\!52\)\( p^{10} T^{10} + \)\(12\!\cdots\!24\)\( p^{15} T^{11} + 4645398449535186778 p^{20} T^{12} - 5158230942312 p^{25} T^{13} - 2817016532 p^{30} T^{14} + 5364 p^{35} T^{15} + p^{40} T^{16} \) |
| 67 | \( 1 - 5994 T - 2518577501 T^{2} + 43127704637370 T^{3} + 2548139821971114109 T^{4} - \)\(68\!\cdots\!04\)\( T^{5} + \)\(21\!\cdots\!62\)\( T^{6} + \)\(47\!\cdots\!72\)\( T^{7} - \)\(17\!\cdots\!02\)\( T^{8} + \)\(47\!\cdots\!72\)\( p^{5} T^{9} + \)\(21\!\cdots\!62\)\( p^{10} T^{10} - \)\(68\!\cdots\!04\)\( p^{15} T^{11} + 2548139821971114109 p^{20} T^{12} + 43127704637370 p^{25} T^{13} - 2518577501 p^{30} T^{14} - 5994 p^{35} T^{15} + p^{40} T^{16} \) |
| 71 | \( ( 1 - 89268 T + 8738662172 T^{2} - 466802240277492 T^{3} + 25044546792022133910 T^{4} - 466802240277492 p^{5} T^{5} + 8738662172 p^{10} T^{6} - 89268 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 73 | \( 1 - 59638 T - 5098535509 T^{2} + 184967914738150 T^{3} + 26836978407770089433 T^{4} - \)\(52\!\cdots\!12\)\( T^{5} - \)\(81\!\cdots\!50\)\( T^{6} + \)\(30\!\cdots\!84\)\( T^{7} + \)\(20\!\cdots\!42\)\( T^{8} + \)\(30\!\cdots\!84\)\( p^{5} T^{9} - \)\(81\!\cdots\!50\)\( p^{10} T^{10} - \)\(52\!\cdots\!12\)\( p^{15} T^{11} + 26836978407770089433 p^{20} T^{12} + 184967914738150 p^{25} T^{13} - 5098535509 p^{30} T^{14} - 59638 p^{35} T^{15} + p^{40} T^{16} \) |
| 79 | \( 1 - 44062 T - 6584960844 T^{2} + 467510535225040 T^{3} + 20422039882069416887 T^{4} - \)\(19\!\cdots\!32\)\( T^{5} - \)\(53\!\cdots\!72\)\( T^{6} + \)\(30\!\cdots\!70\)\( T^{7} - \)\(76\!\cdots\!68\)\( T^{8} + \)\(30\!\cdots\!70\)\( p^{5} T^{9} - \)\(53\!\cdots\!72\)\( p^{10} T^{10} - \)\(19\!\cdots\!32\)\( p^{15} T^{11} + 20422039882069416887 p^{20} T^{12} + 467510535225040 p^{25} T^{13} - 6584960844 p^{30} T^{14} - 44062 p^{35} T^{15} + p^{40} T^{16} \) |
| 83 | \( ( 1 - 208446 T + 23363412401 T^{2} - 1724627286611514 T^{3} + \)\(11\!\cdots\!56\)\( T^{4} - 1724627286611514 p^{5} T^{5} + 23363412401 p^{10} T^{6} - 208446 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 89 | \( 1 + 77520 T + 479326112 T^{2} + 1563841943328288 T^{3} + \)\(12\!\cdots\!70\)\( T^{4} + \)\(11\!\cdots\!72\)\( T^{5} + \)\(11\!\cdots\!40\)\( T^{6} + \)\(89\!\cdots\!20\)\( T^{7} + \)\(66\!\cdots\!67\)\( T^{8} + \)\(89\!\cdots\!20\)\( p^{5} T^{9} + \)\(11\!\cdots\!40\)\( p^{10} T^{10} + \)\(11\!\cdots\!72\)\( p^{15} T^{11} + \)\(12\!\cdots\!70\)\( p^{20} T^{12} + 1563841943328288 p^{25} T^{13} + 479326112 p^{30} T^{14} + 77520 p^{35} T^{15} + p^{40} T^{16} \) |
| 97 | \( ( 1 - 188630 T + 43620869129 T^{2} - 4760435860011510 T^{3} + \)\(59\!\cdots\!64\)\( T^{4} - 4760435860011510 p^{5} T^{5} + 43620869129 p^{10} T^{6} - 188630 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.05307791406769457207849168895, −4.92712954383861458374969040833, −4.72957975982543698217639054564, −4.31752645131620556006845878574, −4.30261160042549693159129301285, −3.91480400933301333557298442757, −3.79577306955930683834142523529, −3.61824299976399470164633089295, −3.48683772359282345589540075745, −3.42385713808556408189656861097, −3.23844859942235457790333170546, −2.88507736115406102639415293585, −2.81465718732409702506243497772, −2.41655969477833661649222774965, −2.36397423999022205422348389040, −2.17325847057059899031331605466, −2.15694558860676772556769789913, −1.94483381893942027133782249754, −1.93027652560405659351694265794, −1.46994270815991637902921007129, −1.18639935162307989511689772319, −0.62445258124539311716451783425, −0.55243391021753936573227649399, −0.54729771755197061543776263797, −0.38892228681373068113390755483,
0.38892228681373068113390755483, 0.54729771755197061543776263797, 0.55243391021753936573227649399, 0.62445258124539311716451783425, 1.18639935162307989511689772319, 1.46994270815991637902921007129, 1.93027652560405659351694265794, 1.94483381893942027133782249754, 2.15694558860676772556769789913, 2.17325847057059899031331605466, 2.36397423999022205422348389040, 2.41655969477833661649222774965, 2.81465718732409702506243497772, 2.88507736115406102639415293585, 3.23844859942235457790333170546, 3.42385713808556408189656861097, 3.48683772359282345589540075745, 3.61824299976399470164633089295, 3.79577306955930683834142523529, 3.91480400933301333557298442757, 4.30261160042549693159129301285, 4.31752645131620556006845878574, 4.72957975982543698217639054564, 4.92712954383861458374969040833, 5.05307791406769457207849168895
Plot not available for L-functions of degree greater than 10.