Properties

Label 16-1472e8-1.1-c1e8-0-1
Degree $16$
Conductor $2.204\times 10^{25}$
Sign $1$
Analytic cond. $3.64316\times 10^{8}$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·9-s + 12·13-s + 24·25-s + 12·29-s − 12·41-s − 28·73-s + 43·81-s + 120·117-s − 40·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 10/3·9-s + 3.32·13-s + 24/5·25-s + 2.22·29-s − 1.87·41-s − 3.27·73-s + 43/9·81-s + 11.0·117-s − 3.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 23^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 23^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{48} \cdot 23^{8}\)
Sign: $1$
Analytic conductor: \(3.64316\times 10^{8}\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{48} \cdot 23^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(13.83177438\)
\(L(\frac12)\) \(\approx\) \(13.83177438\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
good3 \( ( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} )^{2}( 1 + T - 2 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
5 \( ( 1 - 4 T + p T^{2} )^{4}( 1 + 4 T + p T^{2} )^{4} \)
7 \( ( 1 - 34 T^{4} + p^{4} T^{8} )^{2} \)
11 \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{4} \)
13 \( ( 1 - 3 T + 20 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{4} \)
17 \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2}( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
19 \( ( 1 + 48 T^{2} + 1166 T^{4} + 48 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 - 3 T + 52 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{4} \)
31 \( ( 1 - 61 T^{2} + 2184 T^{4} - 61 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{4} \)
41 \( ( 1 + 3 T + 76 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{4} \)
43 \( ( 1 + 144 T^{2} + 8750 T^{4} + 144 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
47 \( ( 1 - 101 T^{2} + 5112 T^{4} - 101 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 144 T^{2} + 10670 T^{4} - 144 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - 106 T^{2} + p^{2} T^{4} )^{4} \)
61 \( ( 1 - 16 T^{2} - 3186 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( ( 1 + 90 T^{2} + p^{2} T^{4} )^{4} \)
71 \( ( 1 - 157 T^{2} + 15576 T^{4} - 157 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
73 \( ( 1 + 7 T + 84 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{4} \)
79 \( ( 1 + 12 T^{2} - 6490 T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
83 \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{4} \)
89 \( ( 1 - 84 T^{2} + 15494 T^{4} - 84 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
97 \( ( 1 - 160 T^{2} + 14526 T^{4} - 160 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.98573718291498214879879462522, −3.94917525487236248919501004002, −3.86643229533179116727339986816, −3.59867136976365610507051322700, −3.55508746116791929720821648122, −3.46765579041632211884321230118, −3.27960330709665001130984910252, −3.03071508207904393411986155842, −3.01680760661376665038394101911, −2.85823240932050662247370220485, −2.82025682825506168179550880429, −2.65022720715931748995550061551, −2.63868532254061816881280132492, −2.17185367184374927802414299988, −2.12002115731792375391199616927, −1.73307970077896258287824002077, −1.71139384390780593539390329590, −1.59713655145455717162693490448, −1.52491111323609353423318033514, −1.21052030971962890031199231617, −1.18192244783552880258164006393, −0.911062001053349251374429796405, −0.874974666319179767841936835842, −0.865242153117852734282300504902, −0.22243799873405784320089691747, 0.22243799873405784320089691747, 0.865242153117852734282300504902, 0.874974666319179767841936835842, 0.911062001053349251374429796405, 1.18192244783552880258164006393, 1.21052030971962890031199231617, 1.52491111323609353423318033514, 1.59713655145455717162693490448, 1.71139384390780593539390329590, 1.73307970077896258287824002077, 2.12002115731792375391199616927, 2.17185367184374927802414299988, 2.63868532254061816881280132492, 2.65022720715931748995550061551, 2.82025682825506168179550880429, 2.85823240932050662247370220485, 3.01680760661376665038394101911, 3.03071508207904393411986155842, 3.27960330709665001130984910252, 3.46765579041632211884321230118, 3.55508746116791929720821648122, 3.59867136976365610507051322700, 3.86643229533179116727339986816, 3.94917525487236248919501004002, 3.98573718291498214879879462522

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.