Properties

Label 16-12e16-1.1-c1e8-0-1
Degree $16$
Conductor $1.849\times 10^{17}$
Sign $1$
Analytic cond. $3.05574$
Root an. cond. $1.07230$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4·8-s + 8·11-s + 2·16-s − 8·19-s + 16·29-s + 24·31-s − 8·32-s − 16·37-s − 8·43-s − 16·44-s + 24·49-s − 16·53-s − 32·59-s + 16·61-s + 8·64-s − 16·67-s + 16·76-s − 24·79-s + 40·83-s + 32·88-s + 32·107-s − 16·113-s − 32·116-s + 32·121-s − 48·124-s − 16·125-s + ⋯
L(s)  = 1  − 4-s + 1.41·8-s + 2.41·11-s + 1/2·16-s − 1.83·19-s + 2.97·29-s + 4.31·31-s − 1.41·32-s − 2.63·37-s − 1.21·43-s − 2.41·44-s + 24/7·49-s − 2.19·53-s − 4.16·59-s + 2.04·61-s + 64-s − 1.95·67-s + 1.83·76-s − 2.70·79-s + 4.39·83-s + 3.41·88-s + 3.09·107-s − 1.50·113-s − 2.97·116-s + 2.90·121-s − 4.31·124-s − 1.43·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{32} \cdot 3^{16}\)
Sign: $1$
Analytic conductor: \(3.05574\)
Root analytic conductor: \(1.07230\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{144} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{32} \cdot 3^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.622328694\)
\(L(\frac12)\) \(\approx\) \(1.622328694\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T^{2} - p^{2} T^{3} + p T^{4} - p^{3} T^{5} + p^{3} T^{6} + p^{4} T^{8} \)
3 \( 1 \)
good5 \( 1 + 16 T^{3} - 12 T^{4} - 48 T^{5} + 128 T^{6} + 32 T^{7} - 506 T^{8} + 32 p T^{9} + 128 p^{2} T^{10} - 48 p^{3} T^{11} - 12 p^{4} T^{12} + 16 p^{5} T^{13} + p^{8} T^{16} \)
7 \( 1 - 24 T^{2} + 292 T^{4} - 2440 T^{6} + 17222 T^{8} - 2440 p^{2} T^{10} + 292 p^{4} T^{12} - 24 p^{6} T^{14} + p^{8} T^{16} \)
11 \( 1 - 8 T + 32 T^{2} - 8 p T^{3} + 12 p T^{4} - 344 T^{5} + 2400 T^{6} - 13000 T^{7} + 54374 T^{8} - 13000 p T^{9} + 2400 p^{2} T^{10} - 344 p^{3} T^{11} + 12 p^{5} T^{12} - 8 p^{6} T^{13} + 32 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 - 64 T^{3} - 4 T^{4} + 704 T^{5} + 2048 T^{6} - 1408 T^{7} - 53466 T^{8} - 1408 p T^{9} + 2048 p^{2} T^{10} + 704 p^{3} T^{11} - 4 p^{4} T^{12} - 64 p^{5} T^{13} + p^{8} T^{16} \)
17 \( ( 1 + 36 T^{2} - 64 T^{3} + 662 T^{4} - 64 p T^{5} + 36 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
19 \( 1 + 8 T + 32 T^{2} + 120 T^{3} + 452 T^{4} + 2168 T^{5} + 10080 T^{6} + 37832 T^{7} + 138918 T^{8} + 37832 p T^{9} + 10080 p^{2} T^{10} + 2168 p^{3} T^{11} + 452 p^{4} T^{12} + 120 p^{5} T^{13} + 32 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
23 \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{4} \)
29 \( 1 - 16 T + 128 T^{2} - 32 p T^{3} + 6580 T^{4} - 38208 T^{5} + 199680 T^{6} - 1073680 T^{7} + 5802054 T^{8} - 1073680 p T^{9} + 199680 p^{2} T^{10} - 38208 p^{3} T^{11} + 6580 p^{4} T^{12} - 32 p^{6} T^{13} + 128 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} \)
31 \( ( 1 - 12 T + 164 T^{2} - 1140 T^{3} + 8218 T^{4} - 1140 p T^{5} + 164 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
37 \( 1 + 16 T + 128 T^{2} + 1008 T^{3} + 5948 T^{4} + 15248 T^{5} - 9344 T^{6} - 717840 T^{7} - 7530650 T^{8} - 717840 p T^{9} - 9344 p^{2} T^{10} + 15248 p^{3} T^{11} + 5948 p^{4} T^{12} + 1008 p^{5} T^{13} + 128 p^{6} T^{14} + 16 p^{7} T^{15} + p^{8} T^{16} \)
41 \( 1 - 200 T^{2} + 19452 T^{4} - 1244536 T^{6} + 58583750 T^{8} - 1244536 p^{2} T^{10} + 19452 p^{4} T^{12} - 200 p^{6} T^{14} + p^{8} T^{16} \)
43 \( 1 + 8 T + 32 T^{2} + 56 T^{3} + 260 T^{4} + 504 T^{5} - 2720 T^{6} - 625528 T^{7} - 7635866 T^{8} - 625528 p T^{9} - 2720 p^{2} T^{10} + 504 p^{3} T^{11} + 260 p^{4} T^{12} + 56 p^{5} T^{13} + 32 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
47 \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{4} \)
53 \( 1 + 16 T + 128 T^{2} + 928 T^{3} + 8564 T^{4} + 82496 T^{5} + 654336 T^{6} + 5021328 T^{7} + 38116486 T^{8} + 5021328 p T^{9} + 654336 p^{2} T^{10} + 82496 p^{3} T^{11} + 8564 p^{4} T^{12} + 928 p^{5} T^{13} + 128 p^{6} T^{14} + 16 p^{7} T^{15} + p^{8} T^{16} \)
59 \( ( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{4} \)
61 \( 1 - 16 T + 128 T^{2} - 1392 T^{3} + 14204 T^{4} - 79760 T^{5} + 426880 T^{6} - 2945904 T^{7} + 19569574 T^{8} - 2945904 p T^{9} + 426880 p^{2} T^{10} - 79760 p^{3} T^{11} + 14204 p^{4} T^{12} - 1392 p^{5} T^{13} + 128 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 + 16 T + 128 T^{2} + 304 T^{3} + 4388 T^{4} + 107696 T^{5} + 1207680 T^{6} + 4800272 T^{7} + 13154790 T^{8} + 4800272 p T^{9} + 1207680 p^{2} T^{10} + 107696 p^{3} T^{11} + 4388 p^{4} T^{12} + 304 p^{5} T^{13} + 128 p^{6} T^{14} + 16 p^{7} T^{15} + p^{8} T^{16} \)
71 \( 1 - 440 T^{2} + 90844 T^{4} - 11522952 T^{6} + 984512390 T^{8} - 11522952 p^{2} T^{10} + 90844 p^{4} T^{12} - 440 p^{6} T^{14} + p^{8} T^{16} \)
73 \( 1 - 328 T^{2} + 45404 T^{4} - 3734648 T^{6} + 259745542 T^{8} - 3734648 p^{2} T^{10} + 45404 p^{4} T^{12} - 328 p^{6} T^{14} + p^{8} T^{16} \)
79 \( ( 1 + 12 T + 148 T^{2} - 44 T^{3} + 794 T^{4} - 44 p T^{5} + 148 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
83 \( 1 - 40 T + 800 T^{2} - 11000 T^{3} + 122436 T^{4} - 1297720 T^{5} + 14460000 T^{6} - 161033000 T^{7} + 1597489574 T^{8} - 161033000 p T^{9} + 14460000 p^{2} T^{10} - 1297720 p^{3} T^{11} + 122436 p^{4} T^{12} - 11000 p^{5} T^{13} + 800 p^{6} T^{14} - 40 p^{7} T^{15} + p^{8} T^{16} \)
89 \( 1 - 248 T^{2} + 36316 T^{4} - 4626504 T^{6} + 476004998 T^{8} - 4626504 p^{2} T^{10} + 36316 p^{4} T^{12} - 248 p^{6} T^{14} + p^{8} T^{16} \)
97 \( ( 1 + 164 T^{2} + 768 T^{3} + 13510 T^{4} + 768 p T^{5} + 164 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.08752734652116803683931669880, −5.95194365995192316877196634557, −5.77987398155214629625033749665, −5.49227390299227299477929295700, −5.46365753711928377767426301603, −5.36796836401240533052893647351, −4.74405947475563852257880690753, −4.68214791067128009684602325879, −4.65242191979274275044560137817, −4.51524986262941988309783634583, −4.49491056660809135317068564670, −4.37773732068345913092906258582, −4.14513801824832481448778993687, −4.02538472525663143726951785769, −3.44849502041304755193107455722, −3.39032603870833149652686017146, −3.21493914555029767279109406586, −3.20098876937620292405561914398, −2.85538845104502399448770315126, −2.23527179801766438322604082817, −2.21564323290093609887249339154, −2.04231455419895829426360444600, −1.44294800074729286752610383688, −1.15700293506763107024784850141, −0.997158448227561168532921654383, 0.997158448227561168532921654383, 1.15700293506763107024784850141, 1.44294800074729286752610383688, 2.04231455419895829426360444600, 2.21564323290093609887249339154, 2.23527179801766438322604082817, 2.85538845104502399448770315126, 3.20098876937620292405561914398, 3.21493914555029767279109406586, 3.39032603870833149652686017146, 3.44849502041304755193107455722, 4.02538472525663143726951785769, 4.14513801824832481448778993687, 4.37773732068345913092906258582, 4.49491056660809135317068564670, 4.51524986262941988309783634583, 4.65242191979274275044560137817, 4.68214791067128009684602325879, 4.74405947475563852257880690753, 5.36796836401240533052893647351, 5.46365753711928377767426301603, 5.49227390299227299477929295700, 5.77987398155214629625033749665, 5.95194365995192316877196634557, 6.08752734652116803683931669880

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.