Properties

Label 12-855e6-1.1-c1e6-0-1
Degree $12$
Conductor $3.907\times 10^{17}$
Sign $1$
Analytic cond. $101264.$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 5-s − 2·11-s − 3·16-s + 6·19-s + 2·20-s + 2·25-s + 36·29-s − 12·41-s − 4·44-s + 23·49-s − 2·55-s + 20·59-s − 14·61-s − 8·64-s − 52·71-s + 12·76-s + 24·79-s − 3·80-s + 24·89-s + 6·95-s + 4·100-s − 20·101-s − 40·109-s + 72·116-s − 31·121-s + 125-s + ⋯
L(s)  = 1  + 4-s + 0.447·5-s − 0.603·11-s − 3/4·16-s + 1.37·19-s + 0.447·20-s + 2/5·25-s + 6.68·29-s − 1.87·41-s − 0.603·44-s + 23/7·49-s − 0.269·55-s + 2.60·59-s − 1.79·61-s − 64-s − 6.17·71-s + 1.37·76-s + 2.70·79-s − 0.335·80-s + 2.54·89-s + 0.615·95-s + 2/5·100-s − 1.99·101-s − 3.83·109-s + 6.68·116-s − 2.81·121-s + 0.0894·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 5^{6} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 5^{6} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(3^{12} \cdot 5^{6} \cdot 19^{6}\)
Sign: $1$
Analytic conductor: \(101264.\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 3^{12} \cdot 5^{6} \cdot 19^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(9.358147182\)
\(L(\frac12)\) \(\approx\) \(9.358147182\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T - T^{2} + 2 T^{3} - p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
19 \( ( 1 - T )^{6} \)
good2 \( 1 - p T^{2} + 7 T^{4} - 3 p^{2} T^{6} + 7 p^{2} T^{8} - p^{5} T^{10} + p^{6} T^{12} \)
7 \( 1 - 23 T^{2} + 307 T^{4} - 2586 T^{6} + 307 p^{2} T^{8} - 23 p^{4} T^{10} + p^{6} T^{12} \)
11 \( ( 1 + T + 17 T^{2} + 10 T^{3} + 17 p T^{4} + p^{2} T^{5} + p^{3} T^{6} )^{2} \)
13 \( 1 - 50 T^{2} + 1315 T^{4} - 21108 T^{6} + 1315 p^{2} T^{8} - 50 p^{4} T^{10} + p^{6} T^{12} \)
17 \( ( 1 - 9 T + 19 T^{2} + 18 T^{3} + 19 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} )( 1 + 9 T + 19 T^{2} - 18 T^{3} + 19 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} ) \)
23 \( 1 - 102 T^{2} + 4831 T^{4} - 138580 T^{6} + 4831 p^{2} T^{8} - 102 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 - 6 T + p T^{2} )^{6} \)
31 \( ( 1 + 37 T^{2} + 128 T^{3} + 37 p T^{4} + p^{3} T^{6} )^{2} \)
37 \( 1 - 166 T^{2} + 13011 T^{4} - 608316 T^{6} + 13011 p^{2} T^{8} - 166 p^{4} T^{10} + p^{6} T^{12} \)
41 \( ( 1 + 6 T + 79 T^{2} + 516 T^{3} + 79 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( 1 - 239 T^{2} + 24571 T^{4} - 1388154 T^{6} + 24571 p^{2} T^{8} - 239 p^{4} T^{10} + p^{6} T^{12} \)
47 \( 1 - 95 T^{2} + 5443 T^{4} - 214314 T^{6} + 5443 p^{2} T^{8} - 95 p^{4} T^{10} + p^{6} T^{12} \)
53 \( 1 - 162 T^{2} + 11539 T^{4} - 610708 T^{6} + 11539 p^{2} T^{8} - 162 p^{4} T^{10} + p^{6} T^{12} \)
59 \( ( 1 - 10 T + 185 T^{2} - 1132 T^{3} + 185 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 + 7 T + 79 T^{2} + 78 T^{3} + 79 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 62 T^{2} + 4771 T^{4} - 199788 T^{6} + 4771 p^{2} T^{8} - 62 p^{4} T^{10} + p^{6} T^{12} \)
71 \( ( 1 + 26 T + 413 T^{2} + 4124 T^{3} + 413 p T^{4} + 26 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 307 T^{2} + 43299 T^{4} - 3822498 T^{6} + 43299 p^{2} T^{8} - 307 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 - 12 T + 229 T^{2} - 1864 T^{3} + 229 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 270 T^{2} + 39367 T^{4} - 3817060 T^{6} + 39367 p^{2} T^{8} - 270 p^{4} T^{10} + p^{6} T^{12} \)
89 \( ( 1 - 12 T - 17 T^{2} + 1320 T^{3} - 17 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
97 \( 1 - 554 T^{2} + 130507 T^{4} - 16717956 T^{6} + 130507 p^{2} T^{8} - 554 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.36387945295630377213066763438, −5.29521076006401585573314191413, −5.10482415866519286995933906796, −5.07795794433856567794343532271, −4.59587082209430712492227982087, −4.53401789975015927981378414551, −4.37151454589885872487660082684, −4.32289491246926012575726101773, −4.31798559317634937561398688010, −3.94943107913009062109312888964, −3.61866432742605536984680181024, −3.22589175694575022491115138366, −3.19544824594187826736925968366, −3.17644940240857250388479928074, −2.81015749332306697732178237401, −2.67431927381163926755411113721, −2.58514641659851077324678392742, −2.45633807964518455770823017436, −2.25204804917240107294739616917, −1.63804014048652847323990572895, −1.63373839324785596726698187873, −1.50544756630966692402952392224, −0.961246311443921929651030259647, −0.64763631516942824428922256579, −0.64216144947282649167307904214, 0.64216144947282649167307904214, 0.64763631516942824428922256579, 0.961246311443921929651030259647, 1.50544756630966692402952392224, 1.63373839324785596726698187873, 1.63804014048652847323990572895, 2.25204804917240107294739616917, 2.45633807964518455770823017436, 2.58514641659851077324678392742, 2.67431927381163926755411113721, 2.81015749332306697732178237401, 3.17644940240857250388479928074, 3.19544824594187826736925968366, 3.22589175694575022491115138366, 3.61866432742605536984680181024, 3.94943107913009062109312888964, 4.31798559317634937561398688010, 4.32289491246926012575726101773, 4.37151454589885872487660082684, 4.53401789975015927981378414551, 4.59587082209430712492227982087, 5.07795794433856567794343532271, 5.10482415866519286995933906796, 5.29521076006401585573314191413, 5.36387945295630377213066763438

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.