Properties

Label 12-74e6-1.1-c7e6-0-0
Degree $12$
Conductor $164206490176$
Sign $1$
Analytic cond. $1.52591\times 10^{8}$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 48·2-s + 28·3-s + 1.34e3·4-s − 14·5-s − 1.34e3·6-s − 980·7-s − 2.86e4·8-s − 2.04e3·9-s + 672·10-s + 2.95e3·11-s + 3.76e4·12-s + 2.39e3·13-s + 4.70e4·14-s − 392·15-s + 5.16e5·16-s − 4.51e4·17-s + 9.80e4·18-s + 1.17e4·19-s − 1.88e4·20-s − 2.74e4·21-s − 1.41e5·22-s + 2.10e4·23-s − 8.02e5·24-s − 1.36e5·25-s − 1.14e5·26-s + 6.15e4·27-s − 1.31e6·28-s + ⋯
L(s)  = 1  − 4.24·2-s + 0.598·3-s + 21/2·4-s − 0.0500·5-s − 2.54·6-s − 1.07·7-s − 19.7·8-s − 0.933·9-s + 0.212·10-s + 0.669·11-s + 6.28·12-s + 0.302·13-s + 4.58·14-s − 0.0299·15-s + 63/2·16-s − 2.22·17-s + 3.96·18-s + 0.393·19-s − 0.525·20-s − 0.646·21-s − 2.84·22-s + 0.360·23-s − 11.8·24-s − 1.75·25-s − 1.28·26-s + 0.601·27-s − 11.3·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 37^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 37^{6}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 37^{6}\)
Sign: $1$
Analytic conductor: \(1.52591\times 10^{8}\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 37^{6} ,\ ( \ : [7/2]^{6} ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(0.6366603934\)
\(L(\frac12)\) \(\approx\) \(0.6366603934\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{3} T )^{6} \)
37 \( ( 1 + p^{3} T )^{6} \)
good3 \( 1 - 28 T + 314 p^{2} T^{2} - 197812 T^{3} + 4208045 p T^{4} - 2613508 p^{5} T^{5} + 953704841 p^{3} T^{6} - 2613508 p^{12} T^{7} + 4208045 p^{15} T^{8} - 197812 p^{21} T^{9} + 314 p^{30} T^{10} - 28 p^{35} T^{11} + p^{42} T^{12} \)
5 \( 1 + 14 T + 137101 T^{2} + 38861676 T^{3} + 2249522144 p T^{4} + 960706393734 p T^{5} + 46373133827628 p^{2} T^{6} + 960706393734 p^{8} T^{7} + 2249522144 p^{15} T^{8} + 38861676 p^{21} T^{9} + 137101 p^{28} T^{10} + 14 p^{35} T^{11} + p^{42} T^{12} \)
7 \( 1 + 20 p^{2} T + 1720401 T^{2} + 19852916 p^{2} T^{3} + 1047083812575 T^{4} + 13462029050304 p^{2} T^{5} + 688712107253953166 T^{6} + 13462029050304 p^{9} T^{7} + 1047083812575 p^{14} T^{8} + 19852916 p^{23} T^{9} + 1720401 p^{28} T^{10} + 20 p^{37} T^{11} + p^{42} T^{12} \)
11 \( 1 - 2956 T + 3630002 p T^{2} - 1177454780 T^{3} + 98650641688625 p T^{4} - 93334256315273948 p T^{5} + \)\(30\!\cdots\!11\)\( T^{6} - 93334256315273948 p^{8} T^{7} + 98650641688625 p^{15} T^{8} - 1177454780 p^{21} T^{9} + 3630002 p^{29} T^{10} - 2956 p^{35} T^{11} + p^{42} T^{12} \)
13 \( 1 - 2394 T + 156273485 T^{2} - 597574230116 T^{3} + 13244142724924304 T^{4} - 83993463153336586690 T^{5} + \)\(89\!\cdots\!24\)\( T^{6} - 83993463153336586690 p^{7} T^{7} + 13244142724924304 p^{14} T^{8} - 597574230116 p^{21} T^{9} + 156273485 p^{28} T^{10} - 2394 p^{35} T^{11} + p^{42} T^{12} \)
17 \( 1 + 45108 T + 1693099934 T^{2} + 1797683304996 p T^{3} + 339716846738737439 T^{4} - \)\(51\!\cdots\!12\)\( T^{5} - \)\(16\!\cdots\!68\)\( T^{6} - \)\(51\!\cdots\!12\)\( p^{7} T^{7} + 339716846738737439 p^{14} T^{8} + 1797683304996 p^{22} T^{9} + 1693099934 p^{28} T^{10} + 45108 p^{35} T^{11} + p^{42} T^{12} \)
19 \( 1 - 11764 T + 2591876282 T^{2} - 1612566519364 p T^{3} + 4313445313829093031 T^{4} - \)\(42\!\cdots\!52\)\( T^{5} + \)\(45\!\cdots\!52\)\( T^{6} - \)\(42\!\cdots\!52\)\( p^{7} T^{7} + 4313445313829093031 p^{14} T^{8} - 1612566519364 p^{22} T^{9} + 2591876282 p^{28} T^{10} - 11764 p^{35} T^{11} + p^{42} T^{12} \)
23 \( 1 - 21052 T + 8712586979 T^{2} + 197856719062424 T^{3} + 36630835070672085560 T^{4} + \)\(14\!\cdots\!68\)\( T^{5} + \)\(15\!\cdots\!28\)\( T^{6} + \)\(14\!\cdots\!68\)\( p^{7} T^{7} + 36630835070672085560 p^{14} T^{8} + 197856719062424 p^{21} T^{9} + 8712586979 p^{28} T^{10} - 21052 p^{35} T^{11} + p^{42} T^{12} \)
29 \( 1 - 288454 T + 73405416045 T^{2} - 12973049741078676 T^{3} + \)\(21\!\cdots\!16\)\( T^{4} - \)\(29\!\cdots\!02\)\( T^{5} + \)\(42\!\cdots\!56\)\( T^{6} - \)\(29\!\cdots\!02\)\( p^{7} T^{7} + \)\(21\!\cdots\!16\)\( p^{14} T^{8} - 12973049741078676 p^{21} T^{9} + 73405416045 p^{28} T^{10} - 288454 p^{35} T^{11} + p^{42} T^{12} \)
31 \( 1 - 578868 T + 245248469923 T^{2} - 70229973225888120 T^{3} + \)\(17\!\cdots\!84\)\( T^{4} - \)\(33\!\cdots\!16\)\( T^{5} + \)\(61\!\cdots\!84\)\( T^{6} - \)\(33\!\cdots\!16\)\( p^{7} T^{7} + \)\(17\!\cdots\!84\)\( p^{14} T^{8} - 70229973225888120 p^{21} T^{9} + 245248469923 p^{28} T^{10} - 578868 p^{35} T^{11} + p^{42} T^{12} \)
41 \( 1 - 1176840 T + 1353320825098 T^{2} - 1052175227166895578 T^{3} + \)\(71\!\cdots\!83\)\( T^{4} - \)\(39\!\cdots\!74\)\( T^{5} + \)\(19\!\cdots\!65\)\( T^{6} - \)\(39\!\cdots\!74\)\( p^{7} T^{7} + \)\(71\!\cdots\!83\)\( p^{14} T^{8} - 1052175227166895578 p^{21} T^{9} + 1353320825098 p^{28} T^{10} - 1176840 p^{35} T^{11} + p^{42} T^{12} \)
43 \( 1 - 2669236 T + 4151202419498 T^{2} - 4596969313952877436 T^{3} + \)\(39\!\cdots\!59\)\( T^{4} - \)\(27\!\cdots\!16\)\( T^{5} + \)\(15\!\cdots\!24\)\( T^{6} - \)\(27\!\cdots\!16\)\( p^{7} T^{7} + \)\(39\!\cdots\!59\)\( p^{14} T^{8} - 4596969313952877436 p^{21} T^{9} + 4151202419498 p^{28} T^{10} - 2669236 p^{35} T^{11} + p^{42} T^{12} \)
47 \( 1 + 131044 T + 909771102465 T^{2} - 43660093396560108 T^{3} + \)\(47\!\cdots\!79\)\( T^{4} - \)\(20\!\cdots\!92\)\( T^{5} + \)\(24\!\cdots\!78\)\( T^{6} - \)\(20\!\cdots\!92\)\( p^{7} T^{7} + \)\(47\!\cdots\!79\)\( p^{14} T^{8} - 43660093396560108 p^{21} T^{9} + 909771102465 p^{28} T^{10} + 131044 p^{35} T^{11} + p^{42} T^{12} \)
53 \( 1 - 983190 T + 1677233327675 T^{2} - 1072795661170862726 T^{3} + \)\(25\!\cdots\!59\)\( T^{4} - \)\(19\!\cdots\!36\)\( T^{5} + \)\(32\!\cdots\!54\)\( T^{6} - \)\(19\!\cdots\!36\)\( p^{7} T^{7} + \)\(25\!\cdots\!59\)\( p^{14} T^{8} - 1072795661170862726 p^{21} T^{9} + 1677233327675 p^{28} T^{10} - 983190 p^{35} T^{11} + p^{42} T^{12} \)
59 \( 1 + 1215568 T + 4910616279926 T^{2} + 5700828021613663344 T^{3} + \)\(21\!\cdots\!99\)\( T^{4} + \)\(20\!\cdots\!08\)\( T^{5} + \)\(57\!\cdots\!76\)\( T^{6} + \)\(20\!\cdots\!08\)\( p^{7} T^{7} + \)\(21\!\cdots\!99\)\( p^{14} T^{8} + 5700828021613663344 p^{21} T^{9} + 4910616279926 p^{28} T^{10} + 1215568 p^{35} T^{11} + p^{42} T^{12} \)
61 \( 1 - 3136358 T + 14029027452217 T^{2} - 32087580051924737196 T^{3} + \)\(80\!\cdots\!56\)\( T^{4} - \)\(15\!\cdots\!98\)\( T^{5} + \)\(29\!\cdots\!56\)\( T^{6} - \)\(15\!\cdots\!98\)\( p^{7} T^{7} + \)\(80\!\cdots\!56\)\( p^{14} T^{8} - 32087580051924737196 p^{21} T^{9} + 14029027452217 p^{28} T^{10} - 3136358 p^{35} T^{11} + p^{42} T^{12} \)
67 \( 1 - 2179276 T + 32154658886415 T^{2} - 59551484011079515600 T^{3} + \)\(45\!\cdots\!76\)\( T^{4} - \)\(68\!\cdots\!12\)\( T^{5} + \)\(35\!\cdots\!52\)\( T^{6} - \)\(68\!\cdots\!12\)\( p^{7} T^{7} + \)\(45\!\cdots\!76\)\( p^{14} T^{8} - 59551484011079515600 p^{21} T^{9} + 32154658886415 p^{28} T^{10} - 2179276 p^{35} T^{11} + p^{42} T^{12} \)
71 \( 1 - 325164 T + 31175640012965 T^{2} - 45094243169301280836 T^{3} + \)\(43\!\cdots\!47\)\( T^{4} - \)\(10\!\cdots\!96\)\( T^{5} + \)\(43\!\cdots\!02\)\( T^{6} - \)\(10\!\cdots\!96\)\( p^{7} T^{7} + \)\(43\!\cdots\!47\)\( p^{14} T^{8} - 45094243169301280836 p^{21} T^{9} + 31175640012965 p^{28} T^{10} - 325164 p^{35} T^{11} + p^{42} T^{12} \)
73 \( 1 - 5011444 T + 34194444086858 T^{2} - \)\(10\!\cdots\!22\)\( T^{3} + \)\(53\!\cdots\!79\)\( T^{4} - \)\(14\!\cdots\!54\)\( T^{5} + \)\(63\!\cdots\!77\)\( T^{6} - \)\(14\!\cdots\!54\)\( p^{7} T^{7} + \)\(53\!\cdots\!79\)\( p^{14} T^{8} - \)\(10\!\cdots\!22\)\( p^{21} T^{9} + 34194444086858 p^{28} T^{10} - 5011444 p^{35} T^{11} + p^{42} T^{12} \)
79 \( 1 - 3173032 T + 98982451603591 T^{2} - \)\(27\!\cdots\!64\)\( T^{3} + \)\(43\!\cdots\!56\)\( T^{4} - \)\(10\!\cdots\!48\)\( T^{5} + \)\(10\!\cdots\!68\)\( T^{6} - \)\(10\!\cdots\!48\)\( p^{7} T^{7} + \)\(43\!\cdots\!56\)\( p^{14} T^{8} - \)\(27\!\cdots\!64\)\( p^{21} T^{9} + 98982451603591 p^{28} T^{10} - 3173032 p^{35} T^{11} + p^{42} T^{12} \)
83 \( 1 + 22567048 T + 340865624480273 T^{2} + \)\(35\!\cdots\!68\)\( T^{3} + \)\(30\!\cdots\!87\)\( T^{4} + \)\(20\!\cdots\!52\)\( T^{5} + \)\(11\!\cdots\!14\)\( T^{6} + \)\(20\!\cdots\!52\)\( p^{7} T^{7} + \)\(30\!\cdots\!87\)\( p^{14} T^{8} + \)\(35\!\cdots\!68\)\( p^{21} T^{9} + 340865624480273 p^{28} T^{10} + 22567048 p^{35} T^{11} + p^{42} T^{12} \)
89 \( 1 - 26836996 T + 436727416452614 T^{2} - \)\(51\!\cdots\!40\)\( T^{3} + \)\(49\!\cdots\!03\)\( T^{4} - \)\(41\!\cdots\!04\)\( T^{5} + \)\(29\!\cdots\!88\)\( T^{6} - \)\(41\!\cdots\!04\)\( p^{7} T^{7} + \)\(49\!\cdots\!03\)\( p^{14} T^{8} - \)\(51\!\cdots\!40\)\( p^{21} T^{9} + 436727416452614 p^{28} T^{10} - 26836996 p^{35} T^{11} + p^{42} T^{12} \)
97 \( 1 - 295792 T + 260268831210958 T^{2} - \)\(10\!\cdots\!80\)\( T^{3} + \)\(29\!\cdots\!43\)\( T^{4} - \)\(23\!\cdots\!48\)\( T^{5} + \)\(24\!\cdots\!44\)\( T^{6} - \)\(23\!\cdots\!48\)\( p^{7} T^{7} + \)\(29\!\cdots\!43\)\( p^{14} T^{8} - \)\(10\!\cdots\!80\)\( p^{21} T^{9} + 260268831210958 p^{28} T^{10} - 295792 p^{35} T^{11} + p^{42} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.70396101778551677674977560775, −6.45934762301571968344495601521, −6.43107077810357683107815789033, −6.33944329516245058532008894079, −6.21661975984554573517147321830, −6.04422340256838188417480087770, −5.60993430612216576848305701979, −5.21380588695754204657225482131, −4.83498105484018947045088556477, −4.58670570594933045740155239058, −4.10187065682825513668347355537, −3.80046991308858061056648105267, −3.77905155872665571343701753993, −3.14087168157851652116598532855, −2.72001643768194291546875366630, −2.64778034547260045751776077716, −2.54499302609837275849153217123, −2.35997394871046904638773156340, −2.18921883059406607295567202367, −1.36003616208743880172402456756, −1.28407571223361304310102957593, −0.933868402556889095920275503668, −0.69321964202088485545760055001, −0.56121230674389349300985486201, −0.24193973982999600292923148944, 0.24193973982999600292923148944, 0.56121230674389349300985486201, 0.69321964202088485545760055001, 0.933868402556889095920275503668, 1.28407571223361304310102957593, 1.36003616208743880172402456756, 2.18921883059406607295567202367, 2.35997394871046904638773156340, 2.54499302609837275849153217123, 2.64778034547260045751776077716, 2.72001643768194291546875366630, 3.14087168157851652116598532855, 3.77905155872665571343701753993, 3.80046991308858061056648105267, 4.10187065682825513668347355537, 4.58670570594933045740155239058, 4.83498105484018947045088556477, 5.21380588695754204657225482131, 5.60993430612216576848305701979, 6.04422340256838188417480087770, 6.21661975984554573517147321830, 6.33944329516245058532008894079, 6.43107077810357683107815789033, 6.45934762301571968344495601521, 6.70396101778551677674977560775

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.