Properties

Label 12-675e6-1.1-c3e6-0-2
Degree $12$
Conductor $9.459\times 10^{16}$
Sign $1$
Analytic cond. $3.99042\times 10^{9}$
Root an. cond. $6.31080$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 76·11-s + 4·16-s − 374·19-s + 320·29-s + 454·31-s + 676·41-s − 76·44-s + 1.22e3·49-s + 280·59-s + 1.19e3·61-s + 819·64-s + 1.20e3·71-s − 374·76-s − 1.25e3·79-s + 4.30e3·89-s + 1.36e3·101-s − 5.21e3·109-s + 320·116-s + 1.57e3·121-s + 454·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1/8·4-s − 2.08·11-s + 1/16·16-s − 4.51·19-s + 2.04·29-s + 2.63·31-s + 2.57·41-s − 0.260·44-s + 3.57·49-s + 0.617·59-s + 2.49·61-s + 1.59·64-s + 2.01·71-s − 0.564·76-s − 1.79·79-s + 5.13·89-s + 1.34·101-s − 4.58·109-s + 0.256·116-s + 1.17·121-s + 0.328·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{18} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{18} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(3^{18} \cdot 5^{12}\)
Sign: $1$
Analytic conductor: \(3.99042\times 10^{9}\)
Root analytic conductor: \(6.31080\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{675} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 3^{18} \cdot 5^{12} ,\ ( \ : [3/2]^{6} ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(2.687926554\)
\(L(\frac12)\) \(\approx\) \(2.687926554\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - T^{2} - 3 T^{4} - 203 p^{2} T^{6} - 3 p^{6} T^{8} - p^{12} T^{10} + p^{18} T^{12} \)
7 \( 1 - 1226 T^{2} + 769535 T^{4} - 316892876 T^{6} + 769535 p^{6} T^{8} - 1226 p^{12} T^{10} + p^{18} T^{12} \)
11 \( ( 1 + 38 T + 1381 T^{2} + 17876 T^{3} + 1381 p^{3} T^{4} + 38 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
13 \( 1 - 3246 T^{2} + 11631063 T^{4} - 30956231140 T^{6} + 11631063 p^{6} T^{8} - 3246 p^{12} T^{10} + p^{18} T^{12} \)
17 \( 1 - 6163 T^{2} + 56646390 T^{4} - 189472696871 T^{6} + 56646390 p^{6} T^{8} - 6163 p^{12} T^{10} + p^{18} T^{12} \)
19 \( ( 1 + 187 T + 24164 T^{2} + 2039395 T^{3} + 24164 p^{3} T^{4} + 187 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
23 \( 1 - 19839 T^{2} + 507262974 T^{4} - 5894416200139 T^{6} + 507262974 p^{6} T^{8} - 19839 p^{12} T^{10} + p^{18} T^{12} \)
29 \( ( 1 - 160 T + 25399 T^{2} + 88280 T^{3} + 25399 p^{3} T^{4} - 160 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
31 \( ( 1 - 227 T + 71400 T^{2} - 13771435 T^{3} + 71400 p^{3} T^{4} - 227 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
37 \( 1 - 97986 T^{2} + 8873792007 T^{4} - 470111365900348 T^{6} + 8873792007 p^{6} T^{8} - 97986 p^{12} T^{10} + p^{18} T^{12} \)
41 \( ( 1 - 338 T + 163951 T^{2} - 34473956 T^{3} + 163951 p^{3} T^{4} - 338 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
43 \( 1 - 156726 T^{2} + 19336556583 T^{4} - 1757584565934100 T^{6} + 19336556583 p^{6} T^{8} - 156726 p^{12} T^{10} + p^{18} T^{12} \)
47 \( 1 - 508570 T^{2} + 117397962543 T^{4} - 15651426994430252 T^{6} + 117397962543 p^{6} T^{8} - 508570 p^{12} T^{10} + p^{18} T^{12} \)
53 \( 1 - 744595 T^{2} + 248680653006 T^{4} - 47637358185692759 T^{6} + 248680653006 p^{6} T^{8} - 744595 p^{12} T^{10} + p^{18} T^{12} \)
59 \( ( 1 - 140 T + 449689 T^{2} - 23374640 T^{3} + 449689 p^{3} T^{4} - 140 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
61 \( ( 1 - 595 T + 678194 T^{2} - 268324783 T^{3} + 678194 p^{3} T^{4} - 595 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
67 \( 1 - 1185590 T^{2} + 637803099863 T^{4} - 223447532584291412 T^{6} + 637803099863 p^{6} T^{8} - 1185590 p^{12} T^{10} + p^{18} T^{12} \)
71 \( ( 1 - 602 T + 490081 T^{2} - 150373964 T^{3} + 490081 p^{3} T^{4} - 602 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
73 \( 1 - 467850 T^{2} + 420984954303 T^{4} - 140390583242060428 T^{6} + 420984954303 p^{6} T^{8} - 467850 p^{12} T^{10} + p^{18} T^{12} \)
79 \( ( 1 + 629 T + 1576176 T^{2} + 622253365 T^{3} + 1576176 p^{3} T^{4} + 629 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
83 \( 1 - 1042599 T^{2} + 467625790374 T^{4} - 106913777507688499 T^{6} + 467625790374 p^{6} T^{8} - 1042599 p^{12} T^{10} + p^{18} T^{12} \)
89 \( ( 1 - 2154 T + 3172479 T^{2} - 3111332052 T^{3} + 3172479 p^{3} T^{4} - 2154 p^{6} T^{5} + p^{9} T^{6} )^{2} \)
97 \( 1 - 4626246 T^{2} + 9511067662287 T^{4} - 11170340228400453268 T^{6} + 9511067662287 p^{6} T^{8} - 4626246 p^{12} T^{10} + p^{18} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.17662748439117658362962948428, −5.01968882865059807055323890372, −4.92251823871788678271149017096, −4.56342519994204696079251652982, −4.42341650003283301003544025171, −4.24728976343177361405627388235, −4.23986839540833921490792650259, −3.92675635240559193458960460843, −3.89088142332429302203860439398, −3.78286239579947985653421401020, −3.25187007387353048281582502364, −3.09548739059331655859451273394, −2.99436100914583143567323470228, −2.50360962358946449610175176023, −2.40809580187535808164944235331, −2.37800815811876254332999011334, −2.33022616579725847727764820506, −2.10348371509837615737129583890, −2.09991871873655084352031644837, −1.28575157749916072699506230107, −0.982483936409185624519269565670, −0.969093584635709347704566490879, −0.828149995391711281771873785559, −0.33371892252096111230374058078, −0.20604686625198852874512881354, 0.20604686625198852874512881354, 0.33371892252096111230374058078, 0.828149995391711281771873785559, 0.969093584635709347704566490879, 0.982483936409185624519269565670, 1.28575157749916072699506230107, 2.09991871873655084352031644837, 2.10348371509837615737129583890, 2.33022616579725847727764820506, 2.37800815811876254332999011334, 2.40809580187535808164944235331, 2.50360962358946449610175176023, 2.99436100914583143567323470228, 3.09548739059331655859451273394, 3.25187007387353048281582502364, 3.78286239579947985653421401020, 3.89088142332429302203860439398, 3.92675635240559193458960460843, 4.23986839540833921490792650259, 4.24728976343177361405627388235, 4.42341650003283301003544025171, 4.56342519994204696079251652982, 4.92251823871788678271149017096, 5.01968882865059807055323890372, 5.17662748439117658362962948428

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.