Properties

Label 12-637e6-1.1-c1e6-0-1
Degree $12$
Conductor $6.681\times 10^{16}$
Sign $1$
Analytic cond. $17318.0$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s − 10·9-s − 8·13-s + 8·16-s + 8·17-s + 6·23-s + 19·25-s + 4·27-s − 14·29-s − 40·36-s − 26·43-s − 32·52-s + 2·53-s − 28·61-s + 12·64-s + 32·68-s + 26·79-s + 45·81-s + 24·92-s + 76·100-s + 16·101-s + 48·103-s − 16·107-s + 16·108-s − 10·113-s − 56·116-s + 80·117-s + ⋯
L(s)  = 1  + 2·4-s − 3.33·9-s − 2.21·13-s + 2·16-s + 1.94·17-s + 1.25·23-s + 19/5·25-s + 0.769·27-s − 2.59·29-s − 6.66·36-s − 3.96·43-s − 4.43·52-s + 0.274·53-s − 3.58·61-s + 3/2·64-s + 3.88·68-s + 2.92·79-s + 5·81-s + 2.50·92-s + 38/5·100-s + 1.59·101-s + 4.72·103-s − 1.54·107-s + 1.53·108-s − 0.940·113-s − 5.19·116-s + 7.39·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{12} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{12} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(7^{12} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(17318.0\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 7^{12} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.765323815\)
\(L(\frac12)\) \(\approx\) \(2.765323815\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + 8 T + 7 T^{2} - 64 T^{3} + 7 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
good2 \( 1 - p^{2} T^{2} + p^{3} T^{4} - 3 p^{2} T^{6} + p^{5} T^{8} - p^{6} T^{10} + p^{6} T^{12} \)
3 \( ( 1 + 5 T^{2} - 2 T^{3} + 5 p T^{4} + p^{3} T^{6} )^{2} \)
5 \( 1 - 19 T^{2} + 162 T^{4} - 919 T^{6} + 162 p^{2} T^{8} - 19 p^{4} T^{10} + p^{6} T^{12} \)
11 \( 1 - 38 T^{2} + 747 T^{4} - 9800 T^{6} + 747 p^{2} T^{8} - 38 p^{4} T^{10} + p^{6} T^{12} \)
17 \( ( 1 - 4 T + 43 T^{2} - 6 p T^{3} + 43 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
19 \( 1 + 5 T^{2} + 238 T^{4} + 10877 T^{6} + 238 p^{2} T^{8} + 5 p^{4} T^{10} + p^{6} T^{12} \)
23 \( ( 1 - 3 T + 44 T^{2} - 59 T^{3} + 44 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
29 \( ( 1 + 7 T + 66 T^{2} + 411 T^{3} + 66 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( 1 - 103 T^{2} + 5914 T^{4} - 224059 T^{6} + 5914 p^{2} T^{8} - 103 p^{4} T^{10} + p^{6} T^{12} \)
37 \( 1 - 114 T^{2} + 6171 T^{4} - 242912 T^{6} + 6171 p^{2} T^{8} - 114 p^{4} T^{10} + p^{6} T^{12} \)
41 \( 1 - 138 T^{2} + 10367 T^{4} - 522380 T^{6} + 10367 p^{2} T^{8} - 138 p^{4} T^{10} + p^{6} T^{12} \)
43 \( ( 1 + 13 T + 164 T^{2} + 1101 T^{3} + 164 p T^{4} + 13 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 - 131 T^{2} + 10566 T^{4} - 603323 T^{6} + 10566 p^{2} T^{8} - 131 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 - T + 150 T^{2} - 93 T^{3} + 150 p T^{4} - p^{2} T^{5} + p^{3} T^{6} )^{2} \)
59 \( 1 - 286 T^{2} + 36983 T^{4} - 2780916 T^{6} + 36983 p^{2} T^{8} - 286 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 + 14 T + 211 T^{2} + 1556 T^{3} + 211 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 322 T^{2} + 47303 T^{4} - 4048956 T^{6} + 47303 p^{2} T^{8} - 322 p^{4} T^{10} + p^{6} T^{12} \)
71 \( 1 - 122 T^{2} + 17115 T^{4} - 1124048 T^{6} + 17115 p^{2} T^{8} - 122 p^{4} T^{10} + p^{6} T^{12} \)
73 \( 1 - 175 T^{2} + 10862 T^{4} - 497775 T^{6} + 10862 p^{2} T^{8} - 175 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 - 13 T + 200 T^{2} - 1869 T^{3} + 200 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 271 T^{2} + 41066 T^{4} - 4200123 T^{6} + 41066 p^{2} T^{8} - 271 p^{4} T^{10} + p^{6} T^{12} \)
89 \( 1 - 415 T^{2} + 80838 T^{4} - 9173143 T^{6} + 80838 p^{2} T^{8} - 415 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 - 7 T^{2} + 14150 T^{4} + 326769 T^{6} + 14150 p^{2} T^{8} - 7 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.79624890033987750436802415283, −5.42399883371316029703684043398, −5.36306859188048973012810299913, −5.24155405214017147076790293919, −4.92744874377888851914935533350, −4.83993584534087142284875673239, −4.81931478374544776816971549563, −4.73437413379863539094759331377, −4.46799073174058105414722910058, −3.84550983473859407535910963826, −3.77321305723303121343986787842, −3.29020351358403761912655909648, −3.27817609460783243359897119902, −3.23684119880560077967834410851, −3.20789029472901558456484565075, −2.90942201973067085614059673007, −2.73634963356593528533385365846, −2.51940384551542578828819452204, −2.31406729583108467397504705361, −1.99214352820529198237866958438, −1.92332482781661870489225873009, −1.48151181388572481382849375305, −1.23055183737234014914427762653, −0.68473158128734591095679135972, −0.35376315368697938620362363447, 0.35376315368697938620362363447, 0.68473158128734591095679135972, 1.23055183737234014914427762653, 1.48151181388572481382849375305, 1.92332482781661870489225873009, 1.99214352820529198237866958438, 2.31406729583108467397504705361, 2.51940384551542578828819452204, 2.73634963356593528533385365846, 2.90942201973067085614059673007, 3.20789029472901558456484565075, 3.23684119880560077967834410851, 3.27817609460783243359897119902, 3.29020351358403761912655909648, 3.77321305723303121343986787842, 3.84550983473859407535910963826, 4.46799073174058105414722910058, 4.73437413379863539094759331377, 4.81931478374544776816971549563, 4.83993584534087142284875673239, 4.92744874377888851914935533350, 5.24155405214017147076790293919, 5.36306859188048973012810299913, 5.42399883371316029703684043398, 5.79624890033987750436802415283

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.