Properties

Label 12-50e6-1.1-c25e6-0-1
Degree $12$
Conductor $15625000000$
Sign $1$
Analytic cond. $6.02517\times 10^{13}$
Root an. cond. $14.0711$
Motivic weight $25$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $6$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.45e4·2-s − 8.01e5·3-s + 3.52e8·4-s − 1.96e10·6-s − 3.40e10·7-s + 3.84e12·8-s − 1.94e12·9-s + 9.86e12·11-s − 2.82e14·12-s − 3.07e13·13-s − 8.35e14·14-s + 3.54e16·16-s − 3.43e15·17-s − 4.79e16·18-s + 2.00e15·19-s + 2.72e16·21-s + 2.42e17·22-s − 1.35e17·23-s − 3.08e18·24-s − 7.56e17·26-s + 1.69e18·27-s − 1.19e19·28-s − 2.92e18·29-s + 7.92e16·31-s + 2.90e20·32-s − 7.90e18·33-s − 8.43e19·34-s + ⋯
L(s)  = 1  + 4.24·2-s − 0.870·3-s + 21/2·4-s − 3.69·6-s − 0.928·7-s + 19.7·8-s − 2.30·9-s + 0.947·11-s − 9.14·12-s − 0.366·13-s − 3.93·14-s + 63/2·16-s − 1.42·17-s − 9.76·18-s + 0.208·19-s + 0.808·21-s + 4.01·22-s − 1.29·23-s − 17.2·24-s − 1.55·26-s + 2.17·27-s − 9.75·28-s − 1.53·29-s + 0.0180·31-s + 44.5·32-s − 0.824·33-s − 6.06·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(26-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s+25/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 5^{12}\)
Sign: $1$
Analytic conductor: \(6.02517\times 10^{13}\)
Root analytic conductor: \(14.0711\)
Motivic weight: \(25\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(6\)
Selberg data: \((12,\ 2^{6} \cdot 5^{12} ,\ ( \ : [25/2]^{6} ),\ 1 )\)

Particular Values

\(L(13)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - p^{12} T )^{6} \)
5 \( 1 \)
good3 \( 1 + 801416 T + 864088413266 p T^{2} + 23978389710317560 p^{4} T^{3} + \)\(17\!\cdots\!65\)\( p^{7} T^{4} + \)\(45\!\cdots\!24\)\( p^{10} T^{5} + \)\(93\!\cdots\!56\)\( p^{16} T^{6} + \)\(45\!\cdots\!24\)\( p^{35} T^{7} + \)\(17\!\cdots\!65\)\( p^{57} T^{8} + 23978389710317560 p^{79} T^{9} + 864088413266 p^{101} T^{10} + 801416 p^{125} T^{11} + p^{150} T^{12} \)
7 \( 1 + 34007705352 T + \)\(37\!\cdots\!02\)\( T^{2} + \)\(10\!\cdots\!40\)\( p T^{3} + \)\(15\!\cdots\!85\)\( p^{3} T^{4} + \)\(87\!\cdots\!76\)\( p^{5} T^{5} + \)\(10\!\cdots\!04\)\( p^{8} T^{6} + \)\(87\!\cdots\!76\)\( p^{30} T^{7} + \)\(15\!\cdots\!85\)\( p^{53} T^{8} + \)\(10\!\cdots\!40\)\( p^{76} T^{9} + \)\(37\!\cdots\!02\)\( p^{100} T^{10} + 34007705352 p^{125} T^{11} + p^{150} T^{12} \)
11 \( 1 - 9861544614312 T + \)\(53\!\cdots\!06\)\( p T^{2} - \)\(40\!\cdots\!20\)\( p^{2} T^{3} + \)\(11\!\cdots\!45\)\( p^{3} T^{4} - \)\(63\!\cdots\!92\)\( p^{5} T^{5} + \)\(11\!\cdots\!44\)\( p^{7} T^{6} - \)\(63\!\cdots\!92\)\( p^{30} T^{7} + \)\(11\!\cdots\!45\)\( p^{53} T^{8} - \)\(40\!\cdots\!20\)\( p^{77} T^{9} + \)\(53\!\cdots\!06\)\( p^{101} T^{10} - 9861544614312 p^{125} T^{11} + p^{150} T^{12} \)
13 \( 1 + 30787386783696 T + \)\(17\!\cdots\!98\)\( T^{2} + \)\(15\!\cdots\!60\)\( T^{3} + \)\(15\!\cdots\!35\)\( p T^{4} + \)\(89\!\cdots\!04\)\( p^{2} T^{5} + \)\(73\!\cdots\!48\)\( p^{3} T^{6} + \)\(89\!\cdots\!04\)\( p^{27} T^{7} + \)\(15\!\cdots\!35\)\( p^{51} T^{8} + \)\(15\!\cdots\!60\)\( p^{75} T^{9} + \)\(17\!\cdots\!98\)\( p^{100} T^{10} + 30787386783696 p^{125} T^{11} + p^{150} T^{12} \)
17 \( 1 + 3432836939805312 T + \)\(15\!\cdots\!02\)\( T^{2} + \)\(16\!\cdots\!40\)\( p T^{3} + \)\(22\!\cdots\!95\)\( p^{2} T^{4} + \)\(28\!\cdots\!64\)\( p^{3} T^{5} + \)\(20\!\cdots\!44\)\( p^{4} T^{6} + \)\(28\!\cdots\!64\)\( p^{28} T^{7} + \)\(22\!\cdots\!95\)\( p^{52} T^{8} + \)\(16\!\cdots\!40\)\( p^{76} T^{9} + \)\(15\!\cdots\!02\)\( p^{100} T^{10} + 3432836939805312 p^{125} T^{11} + p^{150} T^{12} \)
19 \( 1 - 2007656488916520 T + \)\(25\!\cdots\!94\)\( T^{2} + \)\(52\!\cdots\!00\)\( p T^{3} + \)\(51\!\cdots\!85\)\( p^{3} T^{4} + \)\(27\!\cdots\!00\)\( p^{3} T^{5} + \)\(31\!\cdots\!80\)\( p^{4} T^{6} + \)\(27\!\cdots\!00\)\( p^{28} T^{7} + \)\(51\!\cdots\!85\)\( p^{53} T^{8} + \)\(52\!\cdots\!00\)\( p^{76} T^{9} + \)\(25\!\cdots\!94\)\( p^{100} T^{10} - 2007656488916520 p^{125} T^{11} + p^{150} T^{12} \)
23 \( 1 + 135711886432707576 T + \)\(11\!\cdots\!26\)\( p T^{2} + \)\(56\!\cdots\!40\)\( p^{2} T^{3} + \)\(36\!\cdots\!65\)\( p^{3} T^{4} + \)\(15\!\cdots\!36\)\( p^{4} T^{5} + \)\(87\!\cdots\!52\)\( p^{5} T^{6} + \)\(15\!\cdots\!36\)\( p^{29} T^{7} + \)\(36\!\cdots\!65\)\( p^{53} T^{8} + \)\(56\!\cdots\!40\)\( p^{77} T^{9} + \)\(11\!\cdots\!26\)\( p^{101} T^{10} + 135711886432707576 p^{125} T^{11} + p^{150} T^{12} \)
29 \( 1 + 2926032031655504820 T + \)\(19\!\cdots\!94\)\( T^{2} + \)\(38\!\cdots\!00\)\( T^{3} + \)\(14\!\cdots\!15\)\( T^{4} + \)\(22\!\cdots\!00\)\( T^{5} + \)\(67\!\cdots\!80\)\( T^{6} + \)\(22\!\cdots\!00\)\( p^{25} T^{7} + \)\(14\!\cdots\!15\)\( p^{50} T^{8} + \)\(38\!\cdots\!00\)\( p^{75} T^{9} + \)\(19\!\cdots\!94\)\( p^{100} T^{10} + 2926032031655504820 p^{125} T^{11} + p^{150} T^{12} \)
31 \( 1 - 79292935777014912 T + \)\(37\!\cdots\!66\)\( T^{2} + \)\(43\!\cdots\!80\)\( T^{3} + \)\(10\!\cdots\!95\)\( T^{4} + \)\(22\!\cdots\!08\)\( T^{5} + \)\(17\!\cdots\!24\)\( T^{6} + \)\(22\!\cdots\!08\)\( p^{25} T^{7} + \)\(10\!\cdots\!95\)\( p^{50} T^{8} + \)\(43\!\cdots\!80\)\( p^{75} T^{9} + \)\(37\!\cdots\!66\)\( p^{100} T^{10} - 79292935777014912 p^{125} T^{11} + p^{150} T^{12} \)
37 \( 1 + 3345885298190974032 T + \)\(32\!\cdots\!02\)\( T^{2} - \)\(73\!\cdots\!20\)\( T^{3} + \)\(62\!\cdots\!55\)\( T^{4} - \)\(28\!\cdots\!68\)\( T^{5} + \)\(22\!\cdots\!72\)\( p T^{6} - \)\(28\!\cdots\!68\)\( p^{25} T^{7} + \)\(62\!\cdots\!55\)\( p^{50} T^{8} - \)\(73\!\cdots\!20\)\( p^{75} T^{9} + \)\(32\!\cdots\!02\)\( p^{100} T^{10} + 3345885298190974032 p^{125} T^{11} + p^{150} T^{12} \)
41 \( 1 - \)\(10\!\cdots\!12\)\( T + \)\(70\!\cdots\!66\)\( T^{2} - \)\(43\!\cdots\!20\)\( T^{3} + \)\(20\!\cdots\!95\)\( T^{4} - \)\(57\!\cdots\!92\)\( T^{5} + \)\(41\!\cdots\!24\)\( T^{6} - \)\(57\!\cdots\!92\)\( p^{25} T^{7} + \)\(20\!\cdots\!95\)\( p^{50} T^{8} - \)\(43\!\cdots\!20\)\( p^{75} T^{9} + \)\(70\!\cdots\!66\)\( p^{100} T^{10} - \)\(10\!\cdots\!12\)\( p^{125} T^{11} + p^{150} T^{12} \)
43 \( 1 + \)\(16\!\cdots\!36\)\( T + \)\(21\!\cdots\!98\)\( T^{2} + \)\(90\!\cdots\!60\)\( T^{3} + \)\(16\!\cdots\!55\)\( T^{4} - \)\(20\!\cdots\!24\)\( T^{5} + \)\(88\!\cdots\!96\)\( T^{6} - \)\(20\!\cdots\!24\)\( p^{25} T^{7} + \)\(16\!\cdots\!55\)\( p^{50} T^{8} + \)\(90\!\cdots\!60\)\( p^{75} T^{9} + \)\(21\!\cdots\!98\)\( p^{100} T^{10} + \)\(16\!\cdots\!36\)\( p^{125} T^{11} + p^{150} T^{12} \)
47 \( 1 + \)\(40\!\cdots\!92\)\( T + \)\(19\!\cdots\!02\)\( T^{2} + \)\(42\!\cdots\!80\)\( T^{3} + \)\(21\!\cdots\!55\)\( T^{4} + \)\(48\!\cdots\!32\)\( T^{5} + \)\(16\!\cdots\!84\)\( T^{6} + \)\(48\!\cdots\!32\)\( p^{25} T^{7} + \)\(21\!\cdots\!55\)\( p^{50} T^{8} + \)\(42\!\cdots\!80\)\( p^{75} T^{9} + \)\(19\!\cdots\!02\)\( p^{100} T^{10} + \)\(40\!\cdots\!92\)\( p^{125} T^{11} + p^{150} T^{12} \)
53 \( 1 + \)\(97\!\cdots\!16\)\( T + \)\(76\!\cdots\!98\)\( T^{2} + \)\(35\!\cdots\!60\)\( T^{3} + \)\(15\!\cdots\!55\)\( T^{4} + \)\(51\!\cdots\!76\)\( T^{5} + \)\(20\!\cdots\!76\)\( T^{6} + \)\(51\!\cdots\!76\)\( p^{25} T^{7} + \)\(15\!\cdots\!55\)\( p^{50} T^{8} + \)\(35\!\cdots\!60\)\( p^{75} T^{9} + \)\(76\!\cdots\!98\)\( p^{100} T^{10} + \)\(97\!\cdots\!16\)\( p^{125} T^{11} + p^{150} T^{12} \)
59 \( 1 + \)\(12\!\cdots\!40\)\( T + \)\(87\!\cdots\!94\)\( T^{2} + \)\(92\!\cdots\!00\)\( T^{3} + \)\(58\!\cdots\!85\)\( p T^{4} + \)\(30\!\cdots\!00\)\( T^{5} + \)\(81\!\cdots\!80\)\( T^{6} + \)\(30\!\cdots\!00\)\( p^{25} T^{7} + \)\(58\!\cdots\!85\)\( p^{51} T^{8} + \)\(92\!\cdots\!00\)\( p^{75} T^{9} + \)\(87\!\cdots\!94\)\( p^{100} T^{10} + \)\(12\!\cdots\!40\)\( p^{125} T^{11} + p^{150} T^{12} \)
61 \( 1 - \)\(36\!\cdots\!12\)\( T + \)\(16\!\cdots\!66\)\( T^{2} - \)\(72\!\cdots\!20\)\( T^{3} + \)\(11\!\cdots\!95\)\( T^{4} - \)\(58\!\cdots\!92\)\( T^{5} + \)\(58\!\cdots\!24\)\( T^{6} - \)\(58\!\cdots\!92\)\( p^{25} T^{7} + \)\(11\!\cdots\!95\)\( p^{50} T^{8} - \)\(72\!\cdots\!20\)\( p^{75} T^{9} + \)\(16\!\cdots\!66\)\( p^{100} T^{10} - \)\(36\!\cdots\!12\)\( p^{125} T^{11} + p^{150} T^{12} \)
67 \( 1 + \)\(16\!\cdots\!12\)\( T + \)\(91\!\cdots\!02\)\( T^{2} - \)\(25\!\cdots\!20\)\( T^{3} + \)\(56\!\cdots\!55\)\( T^{4} - \)\(80\!\cdots\!68\)\( T^{5} + \)\(23\!\cdots\!24\)\( T^{6} - \)\(80\!\cdots\!68\)\( p^{25} T^{7} + \)\(56\!\cdots\!55\)\( p^{50} T^{8} - \)\(25\!\cdots\!20\)\( p^{75} T^{9} + \)\(91\!\cdots\!02\)\( p^{100} T^{10} + \)\(16\!\cdots\!12\)\( p^{125} T^{11} + p^{150} T^{12} \)
71 \( 1 - \)\(74\!\cdots\!12\)\( T + \)\(61\!\cdots\!66\)\( T^{2} - \)\(26\!\cdots\!20\)\( T^{3} + \)\(16\!\cdots\!95\)\( T^{4} - \)\(24\!\cdots\!92\)\( T^{5} + \)\(30\!\cdots\!24\)\( T^{6} - \)\(24\!\cdots\!92\)\( p^{25} T^{7} + \)\(16\!\cdots\!95\)\( p^{50} T^{8} - \)\(26\!\cdots\!20\)\( p^{75} T^{9} + \)\(61\!\cdots\!66\)\( p^{100} T^{10} - \)\(74\!\cdots\!12\)\( p^{125} T^{11} + p^{150} T^{12} \)
73 \( 1 + \)\(38\!\cdots\!76\)\( T + \)\(16\!\cdots\!98\)\( T^{2} + \)\(27\!\cdots\!60\)\( T^{3} + \)\(57\!\cdots\!55\)\( T^{4} + \)\(74\!\cdots\!76\)\( T^{5} + \)\(66\!\cdots\!36\)\( T^{6} + \)\(74\!\cdots\!76\)\( p^{25} T^{7} + \)\(57\!\cdots\!55\)\( p^{50} T^{8} + \)\(27\!\cdots\!60\)\( p^{75} T^{9} + \)\(16\!\cdots\!98\)\( p^{100} T^{10} + \)\(38\!\cdots\!76\)\( p^{125} T^{11} + p^{150} T^{12} \)
79 \( 1 + \)\(40\!\cdots\!20\)\( T + \)\(66\!\cdots\!94\)\( T^{2} + \)\(43\!\cdots\!00\)\( T^{3} + \)\(30\!\cdots\!15\)\( T^{4} + \)\(15\!\cdots\!00\)\( T^{5} + \)\(11\!\cdots\!80\)\( T^{6} + \)\(15\!\cdots\!00\)\( p^{25} T^{7} + \)\(30\!\cdots\!15\)\( p^{50} T^{8} + \)\(43\!\cdots\!00\)\( p^{75} T^{9} + \)\(66\!\cdots\!94\)\( p^{100} T^{10} + \)\(40\!\cdots\!20\)\( p^{125} T^{11} + p^{150} T^{12} \)
83 \( 1 - \)\(24\!\cdots\!44\)\( T + \)\(58\!\cdots\!98\)\( T^{2} - \)\(93\!\cdots\!40\)\( T^{3} + \)\(13\!\cdots\!55\)\( T^{4} - \)\(16\!\cdots\!24\)\( T^{5} + \)\(17\!\cdots\!16\)\( T^{6} - \)\(16\!\cdots\!24\)\( p^{25} T^{7} + \)\(13\!\cdots\!55\)\( p^{50} T^{8} - \)\(93\!\cdots\!40\)\( p^{75} T^{9} + \)\(58\!\cdots\!98\)\( p^{100} T^{10} - \)\(24\!\cdots\!44\)\( p^{125} T^{11} + p^{150} T^{12} \)
89 \( 1 - \)\(29\!\cdots\!40\)\( T + \)\(79\!\cdots\!94\)\( T^{2} + \)\(22\!\cdots\!00\)\( T^{3} + \)\(15\!\cdots\!15\)\( T^{4} - \)\(12\!\cdots\!00\)\( T^{5} + \)\(25\!\cdots\!80\)\( T^{6} - \)\(12\!\cdots\!00\)\( p^{25} T^{7} + \)\(15\!\cdots\!15\)\( p^{50} T^{8} + \)\(22\!\cdots\!00\)\( p^{75} T^{9} + \)\(79\!\cdots\!94\)\( p^{100} T^{10} - \)\(29\!\cdots\!40\)\( p^{125} T^{11} + p^{150} T^{12} \)
97 \( 1 - \)\(49\!\cdots\!08\)\( T + \)\(17\!\cdots\!02\)\( T^{2} - \)\(47\!\cdots\!20\)\( T^{3} + \)\(13\!\cdots\!55\)\( T^{4} - \)\(16\!\cdots\!68\)\( T^{5} + \)\(66\!\cdots\!84\)\( T^{6} - \)\(16\!\cdots\!68\)\( p^{25} T^{7} + \)\(13\!\cdots\!55\)\( p^{50} T^{8} - \)\(47\!\cdots\!20\)\( p^{75} T^{9} + \)\(17\!\cdots\!02\)\( p^{100} T^{10} - \)\(49\!\cdots\!08\)\( p^{125} T^{11} + p^{150} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.37874090193503905283651040129, −5.02093607160225073258093450480, −5.01999490427217786459971751307, −4.79170756460908010078615471898, −4.73131741716939731113093320322, −4.62154975464168539200005211178, −4.17525603782516464402099278373, −4.00693374817771153070729377968, −3.70218212295761472582509372544, −3.63739006076431670839858848036, −3.62227231481011207344262671958, −3.56045100734653545326331834112, −3.24746495714362166885574925900, −2.78564164429638021889967873776, −2.68459019158598909538897921551, −2.62855393423141583312383994949, −2.52453471070194034842298491789, −2.33431899642090755249656275690, −2.32988521467664185727467023783, −1.62351563379580516848345803221, −1.60258220389486573729143361472, −1.47087784794292522520309692647, −1.36542102772041476671398671123, −1.07253414120163122086015370079, −0.967074509945198751075113853278, 0, 0, 0, 0, 0, 0, 0.967074509945198751075113853278, 1.07253414120163122086015370079, 1.36542102772041476671398671123, 1.47087784794292522520309692647, 1.60258220389486573729143361472, 1.62351563379580516848345803221, 2.32988521467664185727467023783, 2.33431899642090755249656275690, 2.52453471070194034842298491789, 2.62855393423141583312383994949, 2.68459019158598909538897921551, 2.78564164429638021889967873776, 3.24746495714362166885574925900, 3.56045100734653545326331834112, 3.62227231481011207344262671958, 3.63739006076431670839858848036, 3.70218212295761472582509372544, 4.00693374817771153070729377968, 4.17525603782516464402099278373, 4.62154975464168539200005211178, 4.73131741716939731113093320322, 4.79170756460908010078615471898, 5.01999490427217786459971751307, 5.02093607160225073258093450480, 5.37874090193503905283651040129

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.