Properties

Label 12-475e6-1.1-c1e6-0-5
Degree $12$
Conductor $1.149\times 10^{16}$
Sign $1$
Analytic cond. $2977.31$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 8·9-s + 2·11-s − 5·16-s − 6·19-s + 10·29-s − 2·31-s + 16·36-s + 2·41-s + 4·44-s + 28·49-s + 12·59-s + 6·61-s − 17·64-s + 14·71-s − 12·76-s + 36·79-s + 20·81-s + 40·89-s + 16·99-s + 24·101-s − 10·109-s + 20·116-s − 55·121-s − 4·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 4-s + 8/3·9-s + 0.603·11-s − 5/4·16-s − 1.37·19-s + 1.85·29-s − 0.359·31-s + 8/3·36-s + 0.312·41-s + 0.603·44-s + 4·49-s + 1.56·59-s + 0.768·61-s − 2.12·64-s + 1.66·71-s − 1.37·76-s + 4.05·79-s + 20/9·81-s + 4.23·89-s + 1.60·99-s + 2.38·101-s − 0.957·109-s + 1.85·116-s − 5·121-s − 0.359·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(5^{12} \cdot 19^{6}\)
Sign: $1$
Analytic conductor: \(2977.31\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 5^{12} \cdot 19^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.342371237\)
\(L(\frac12)\) \(\approx\) \(7.342371237\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( ( 1 + T )^{6} \)
good2 \( 1 - p T^{2} + 9 T^{4} - 11 T^{6} + 9 p^{2} T^{8} - p^{5} T^{10} + p^{6} T^{12} \)
3 \( 1 - 8 T^{2} + 44 T^{4} - 149 T^{6} + 44 p^{2} T^{8} - 8 p^{4} T^{10} + p^{6} T^{12} \)
7 \( 1 - 4 p T^{2} + 352 T^{4} - 2869 T^{6} + 352 p^{2} T^{8} - 4 p^{5} T^{10} + p^{6} T^{12} \)
11 \( ( 1 - T + 29 T^{2} - 23 T^{3} + 29 p T^{4} - p^{2} T^{5} + p^{3} T^{6} )^{2} \)
13 \( 1 + 3 T^{2} + 237 T^{4} - 961 T^{6} + 237 p^{2} T^{8} + 3 p^{4} T^{10} + p^{6} T^{12} \)
17 \( 1 - 28 T^{2} + 812 T^{4} - 15009 T^{6} + 812 p^{2} T^{8} - 28 p^{4} T^{10} + p^{6} T^{12} \)
23 \( 1 - 56 T^{2} + 2472 T^{4} - 63173 T^{6} + 2472 p^{2} T^{8} - 56 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 - 5 T + 91 T^{2} - 285 T^{3} + 91 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( ( 1 + T + 63 T^{2} + 115 T^{3} + 63 p T^{4} + p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( 1 - 49 T^{2} + 4357 T^{4} - 133537 T^{6} + 4357 p^{2} T^{8} - 49 p^{4} T^{10} + p^{6} T^{12} \)
41 \( ( 1 - T + p T^{2} + 73 T^{3} + p^{2} T^{4} - p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( 1 - 7 T^{2} + 502 T^{4} - 75811 T^{6} + 502 p^{2} T^{8} - 7 p^{4} T^{10} + p^{6} T^{12} \)
47 \( 1 - 73 T^{2} + 3537 T^{4} - 120889 T^{6} + 3537 p^{2} T^{8} - 73 p^{4} T^{10} + p^{6} T^{12} \)
53 \( 1 + 37 T^{2} + 2574 T^{4} + 40561 T^{6} + 2574 p^{2} T^{8} + 37 p^{4} T^{10} + p^{6} T^{12} \)
59 \( ( 1 - 6 T + 137 T^{2} - 508 T^{3} + 137 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 - 3 T + 173 T^{2} - 367 T^{3} + 173 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 233 T^{2} + 26437 T^{4} - 2023649 T^{6} + 26437 p^{2} T^{8} - 233 p^{4} T^{10} + p^{6} T^{12} \)
71 \( ( 1 - 7 T + 212 T^{2} - 947 T^{3} + 212 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 377 T^{2} + 62917 T^{4} - 5943041 T^{6} + 62917 p^{2} T^{8} - 377 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 - 18 T + 254 T^{2} - 31 p T^{3} + 254 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 + 51 T^{2} - 6819 T^{4} - 697137 T^{6} - 6819 p^{2} T^{8} + 51 p^{4} T^{10} + p^{6} T^{12} \)
89 \( ( 1 - 20 T + 318 T^{2} - 3435 T^{3} + 318 p T^{4} - 20 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
97 \( 1 - 413 T^{2} + 79957 T^{4} - 9536609 T^{6} + 79957 p^{2} T^{8} - 413 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.05700799153281735036208714066, −5.75573087197535777027025033939, −5.71288062202192544679471992978, −5.33195578376663913744324793332, −5.08011489686288432605022771968, −5.03770085644675788851732631514, −5.00210981434479267325767906747, −4.49570962617696038617552861540, −4.39446479170640736799797195350, −4.38614780625759664393458094098, −4.12339578204318141889404929651, −4.01258524216955506088790076057, −3.65493824072221312134780137273, −3.61456565048904532477824036870, −3.49703510890838847223918196093, −3.01046236395416844157784638829, −2.63238659433193840400727091627, −2.54771212301762541711046823929, −2.30349300319789999501504063094, −2.03883293802583197803124029126, −1.95462892868371112159918293067, −1.80531395515927129298793889554, −1.13604571833398348087700464347, −0.843513459550189060569675064243, −0.77630648674142647658818347821, 0.77630648674142647658818347821, 0.843513459550189060569675064243, 1.13604571833398348087700464347, 1.80531395515927129298793889554, 1.95462892868371112159918293067, 2.03883293802583197803124029126, 2.30349300319789999501504063094, 2.54771212301762541711046823929, 2.63238659433193840400727091627, 3.01046236395416844157784638829, 3.49703510890838847223918196093, 3.61456565048904532477824036870, 3.65493824072221312134780137273, 4.01258524216955506088790076057, 4.12339578204318141889404929651, 4.38614780625759664393458094098, 4.39446479170640736799797195350, 4.49570962617696038617552861540, 5.00210981434479267325767906747, 5.03770085644675788851732631514, 5.08011489686288432605022771968, 5.33195578376663913744324793332, 5.71288062202192544679471992978, 5.75573087197535777027025033939, 6.05700799153281735036208714066

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.