Properties

Label 12-3e36-1.1-c1e6-0-0
Degree $12$
Conductor $1.501\times 10^{17}$
Sign $1$
Analytic cond. $38907.0$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 9·4-s + 3·5-s − 18·8-s − 9·10-s − 12·11-s + 36·16-s − 9·17-s + 3·19-s + 27·20-s + 36·22-s + 3·23-s + 9·25-s − 12·29-s − 66·32-s + 27·34-s + 3·37-s − 9·38-s − 54·40-s − 24·41-s − 108·44-s − 9·46-s − 30·47-s − 27·50-s + 36·53-s − 36·55-s + 36·58-s + ⋯
L(s)  = 1  − 2.12·2-s + 9/2·4-s + 1.34·5-s − 6.36·8-s − 2.84·10-s − 3.61·11-s + 9·16-s − 2.18·17-s + 0.688·19-s + 6.03·20-s + 7.67·22-s + 0.625·23-s + 9/5·25-s − 2.22·29-s − 11.6·32-s + 4.63·34-s + 0.493·37-s − 1.45·38-s − 8.53·40-s − 3.74·41-s − 16.2·44-s − 1.32·46-s − 4.37·47-s − 3.81·50-s + 4.94·53-s − 4.85·55-s + 4.72·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{36}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{36}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(3^{36}\)
Sign: $1$
Analytic conductor: \(38907.0\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 3^{36} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5703690511\)
\(L(\frac12)\) \(\approx\) \(0.5703690511\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 3 T - 9 T^{3} - 9 T^{4} + 3 p^{2} T^{5} + 37 T^{6} + 3 p^{3} T^{7} - 9 p^{2} T^{8} - 9 p^{3} T^{9} + 3 p^{5} T^{11} + p^{6} T^{12} \)
5 \( 1 - 3 T - 9 T^{4} + 3 p T^{5} + 109 T^{6} + 3 p^{2} T^{7} - 9 p^{2} T^{8} - 3 p^{5} T^{11} + p^{6} T^{12} \)
7 \( 1 + 11 T^{3} - 27 T^{4} - 27 T^{5} + 345 T^{6} - 27 p T^{7} - 27 p^{2} T^{8} + 11 p^{3} T^{9} + p^{6} T^{12} \)
11 \( 1 + 12 T + 54 T^{2} + 9 p T^{3} + 207 T^{4} + 2361 T^{5} + 12241 T^{6} + 2361 p T^{7} + 207 p^{2} T^{8} + 9 p^{4} T^{9} + 54 p^{4} T^{10} + 12 p^{5} T^{11} + p^{6} T^{12} \)
13 \( 1 + 29 T^{3} - 81 T^{4} - 621 T^{5} + 1641 T^{6} - 621 p T^{7} - 81 p^{2} T^{8} + 29 p^{3} T^{9} + p^{6} T^{12} \)
17 \( ( 1 + 3 T - 8 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{3} \)
19 \( 1 - 3 T - 24 T^{2} + 131 T^{3} + 117 T^{4} - 1116 T^{5} + 3003 T^{6} - 1116 p T^{7} + 117 p^{2} T^{8} + 131 p^{3} T^{9} - 24 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \)
23 \( 1 - 3 T - 54 T^{3} - 441 T^{4} + 2481 T^{5} + 3889 T^{6} + 2481 p T^{7} - 441 p^{2} T^{8} - 54 p^{3} T^{9} - 3 p^{5} T^{11} + p^{6} T^{12} \)
29 \( 1 + 12 T + 81 T^{2} + 243 T^{3} + 1125 T^{4} + 8445 T^{5} + 70210 T^{6} + 8445 p T^{7} + 1125 p^{2} T^{8} + 243 p^{3} T^{9} + 81 p^{4} T^{10} + 12 p^{5} T^{11} + p^{6} T^{12} \)
31 \( 1 - 27 T^{2} + 245 T^{3} - 945 T^{4} - 5967 T^{5} + 71382 T^{6} - 5967 p T^{7} - 945 p^{2} T^{8} + 245 p^{3} T^{9} - 27 p^{4} T^{10} + p^{6} T^{12} \)
37 \( 1 - 3 T - 78 T^{2} + 5 p T^{3} + 3681 T^{4} - 4194 T^{5} - 141339 T^{6} - 4194 p T^{7} + 3681 p^{2} T^{8} + 5 p^{4} T^{9} - 78 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \)
41 \( 1 + 24 T + 270 T^{2} + 2043 T^{3} + 13545 T^{4} + 87621 T^{5} + 560953 T^{6} + 87621 p T^{7} + 13545 p^{2} T^{8} + 2043 p^{3} T^{9} + 270 p^{4} T^{10} + 24 p^{5} T^{11} + p^{6} T^{12} \)
43 \( 1 - 27 T^{2} + 389 T^{3} - 1701 T^{4} - 12987 T^{5} + 148926 T^{6} - 12987 p T^{7} - 1701 p^{2} T^{8} + 389 p^{3} T^{9} - 27 p^{4} T^{10} + p^{6} T^{12} \)
47 \( 1 + 30 T + 405 T^{2} + 3249 T^{3} + 14895 T^{4} + 9255 T^{5} - 267722 T^{6} + 9255 p T^{7} + 14895 p^{2} T^{8} + 3249 p^{3} T^{9} + 405 p^{4} T^{10} + 30 p^{5} T^{11} + p^{6} T^{12} \)
53 \( ( 1 - 18 T + 240 T^{2} - 1989 T^{3} + 240 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
59 \( 1 - 3 T + 27 T^{2} + 783 T^{3} + 612 T^{4} - 714 T^{5} + 588493 T^{6} - 714 p T^{7} + 612 p^{2} T^{8} + 783 p^{3} T^{9} + 27 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \)
61 \( 1 - 9 T + 144 T^{2} - 988 T^{3} + 15039 T^{4} - 96363 T^{5} + 1055181 T^{6} - 96363 p T^{7} + 15039 p^{2} T^{8} - 988 p^{3} T^{9} + 144 p^{4} T^{10} - 9 p^{5} T^{11} + p^{6} T^{12} \)
67 \( 1 + 18 T + 117 T^{2} + 29 T^{3} - 189 T^{4} + 85995 T^{5} + 1190478 T^{6} + 85995 p T^{7} - 189 p^{2} T^{8} + 29 p^{3} T^{9} + 117 p^{4} T^{10} + 18 p^{5} T^{11} + p^{6} T^{12} \)
71 \( 1 - 9 T + 30 T^{2} + 99 T^{3} - 3531 T^{4} + 5580 T^{5} + 200671 T^{6} + 5580 p T^{7} - 3531 p^{2} T^{8} + 99 p^{3} T^{9} + 30 p^{4} T^{10} - 9 p^{5} T^{11} + p^{6} T^{12} \)
73 \( 1 + 6 T - 114 T^{2} - 58 T^{3} + 8676 T^{4} - 27576 T^{5} - 826869 T^{6} - 27576 p T^{7} + 8676 p^{2} T^{8} - 58 p^{3} T^{9} - 114 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \)
79 \( 1 + 27 T + 270 T^{2} + 686 T^{3} - 8775 T^{4} - 98577 T^{5} - 753063 T^{6} - 98577 p T^{7} - 8775 p^{2} T^{8} + 686 p^{3} T^{9} + 270 p^{4} T^{10} + 27 p^{5} T^{11} + p^{6} T^{12} \)
83 \( 1 - 6 T + 81 T^{2} - 99 T^{3} + 6147 T^{4} + 53139 T^{5} - 61226 T^{6} + 53139 p T^{7} + 6147 p^{2} T^{8} - 99 p^{3} T^{9} + 81 p^{4} T^{10} - 6 p^{5} T^{11} + p^{6} T^{12} \)
89 \( 1 - 78 T^{2} + 1998 T^{3} - 858 T^{4} - 77922 T^{5} + 1866463 T^{6} - 77922 p T^{7} - 858 p^{2} T^{8} + 1998 p^{3} T^{9} - 78 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 + 324 T^{2} + 686 T^{3} + 55188 T^{4} + 166860 T^{5} + 6246579 T^{6} + 166860 p T^{7} + 55188 p^{2} T^{8} + 686 p^{3} T^{9} + 324 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.53396240141280029888023670253, −5.39815783639535925963525539395, −5.34086009314810063884943542500, −5.21086285817132883469804942898, −5.01838269263494668593048493759, −4.93282899135714454151038459976, −4.73687063464548157442037133760, −4.33162500712435502897221860025, −4.11261971614694264988432304094, −3.93002952876166923136851428472, −3.54457905232405511952809491081, −3.33975228418638517137297466404, −3.32649726448077348653065548572, −3.09474078405467897628033262595, −2.75020175818702484396726527528, −2.54151452276696499929114057980, −2.41926274959492276510373789580, −2.41541886104969997472809390485, −2.19097937166501610708544338159, −1.82140077763391736019569406286, −1.60305492429182375595316581281, −1.51030829205420779291072382727, −1.35313326382164775267940421347, −0.48592131081237900324447648139, −0.25249697471821080337441353075, 0.25249697471821080337441353075, 0.48592131081237900324447648139, 1.35313326382164775267940421347, 1.51030829205420779291072382727, 1.60305492429182375595316581281, 1.82140077763391736019569406286, 2.19097937166501610708544338159, 2.41541886104969997472809390485, 2.41926274959492276510373789580, 2.54151452276696499929114057980, 2.75020175818702484396726527528, 3.09474078405467897628033262595, 3.32649726448077348653065548572, 3.33975228418638517137297466404, 3.54457905232405511952809491081, 3.93002952876166923136851428472, 4.11261971614694264988432304094, 4.33162500712435502897221860025, 4.73687063464548157442037133760, 4.93282899135714454151038459976, 5.01838269263494668593048493759, 5.21086285817132883469804942898, 5.34086009314810063884943542500, 5.39815783639535925963525539395, 5.53396240141280029888023670253

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.