Properties

Label 12-3808e6-1.1-c1e6-0-6
Degree $12$
Conductor $3.049\times 10^{21}$
Sign $1$
Analytic cond. $7.90395\times 10^{8}$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $6$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 6·5-s + 6·7-s − 5·9-s − 2·11-s − 4·13-s + 12·15-s − 6·17-s − 10·19-s − 12·21-s + 4·23-s + 5·25-s + 12·27-s − 14·29-s + 8·31-s + 4·33-s − 36·35-s − 4·37-s + 8·39-s − 2·41-s − 8·43-s + 30·45-s − 2·47-s + 21·49-s + 12·51-s − 10·53-s + 12·55-s + ⋯
L(s)  = 1  − 1.15·3-s − 2.68·5-s + 2.26·7-s − 5/3·9-s − 0.603·11-s − 1.10·13-s + 3.09·15-s − 1.45·17-s − 2.29·19-s − 2.61·21-s + 0.834·23-s + 25-s + 2.30·27-s − 2.59·29-s + 1.43·31-s + 0.696·33-s − 6.08·35-s − 0.657·37-s + 1.28·39-s − 0.312·41-s − 1.21·43-s + 4.47·45-s − 0.291·47-s + 3·49-s + 1.68·51-s − 1.37·53-s + 1.61·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{30} \cdot 7^{6} \cdot 17^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{30} \cdot 7^{6} \cdot 17^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{30} \cdot 7^{6} \cdot 17^{6}\)
Sign: $1$
Analytic conductor: \(7.90395\times 10^{8}\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(6\)
Selberg data: \((12,\ 2^{30} \cdot 7^{6} \cdot 17^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( ( 1 - T )^{6} \)
17 \( ( 1 + T )^{6} \)
good3 \( 1 + 2 T + p^{2} T^{2} + 16 T^{3} + 16 p T^{4} + 68 T^{5} + 56 p T^{6} + 68 p T^{7} + 16 p^{3} T^{8} + 16 p^{3} T^{9} + p^{6} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} \)
5 \( 1 + 6 T + 31 T^{2} + 122 T^{3} + 16 p^{2} T^{4} + 1106 T^{5} + 2688 T^{6} + 1106 p T^{7} + 16 p^{4} T^{8} + 122 p^{3} T^{9} + 31 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \)
11 \( 1 + 2 T + 32 T^{2} + 18 T^{3} + 515 T^{4} - 40 T^{5} + 6232 T^{6} - 40 p T^{7} + 515 p^{2} T^{8} + 18 p^{3} T^{9} + 32 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} \)
13 \( 1 + 4 T + 4 p T^{2} + 116 T^{3} + 971 T^{4} + 80 p T^{5} + 12048 T^{6} + 80 p^{2} T^{7} + 971 p^{2} T^{8} + 116 p^{3} T^{9} + 4 p^{5} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12} \)
19 \( 1 + 10 T + 82 T^{2} + 326 T^{3} + 1027 T^{4} - 852 T^{5} - 6444 T^{6} - 852 p T^{7} + 1027 p^{2} T^{8} + 326 p^{3} T^{9} + 82 p^{4} T^{10} + 10 p^{5} T^{11} + p^{6} T^{12} \)
23 \( 1 - 4 T + 2 p T^{2} - 148 T^{3} + 1163 T^{4} - 2656 T^{5} + 23980 T^{6} - 2656 p T^{7} + 1163 p^{2} T^{8} - 148 p^{3} T^{9} + 2 p^{5} T^{10} - 4 p^{5} T^{11} + p^{6} T^{12} \)
29 \( 1 + 14 T + 220 T^{2} + 1906 T^{3} + 17179 T^{4} + 106472 T^{5} + 675888 T^{6} + 106472 p T^{7} + 17179 p^{2} T^{8} + 1906 p^{3} T^{9} + 220 p^{4} T^{10} + 14 p^{5} T^{11} + p^{6} T^{12} \)
31 \( 1 - 8 T + 89 T^{2} - 664 T^{3} + 4656 T^{4} - 25704 T^{5} + 169068 T^{6} - 25704 p T^{7} + 4656 p^{2} T^{8} - 664 p^{3} T^{9} + 89 p^{4} T^{10} - 8 p^{5} T^{11} + p^{6} T^{12} \)
37 \( 1 + 4 T + 122 T^{2} + 500 T^{3} + 8227 T^{4} + 28312 T^{5} + 365892 T^{6} + 28312 p T^{7} + 8227 p^{2} T^{8} + 500 p^{3} T^{9} + 122 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12} \)
41 \( 1 + 2 T + 195 T^{2} + 182 T^{3} + 16804 T^{4} + 6552 T^{5} + 861264 T^{6} + 6552 p T^{7} + 16804 p^{2} T^{8} + 182 p^{3} T^{9} + 195 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} \)
43 \( 1 + 8 T + 187 T^{2} + 1114 T^{3} + 16156 T^{4} + 78342 T^{5} + 862296 T^{6} + 78342 p T^{7} + 16156 p^{2} T^{8} + 1114 p^{3} T^{9} + 187 p^{4} T^{10} + 8 p^{5} T^{11} + p^{6} T^{12} \)
47 \( 1 + 2 T + 192 T^{2} + 250 T^{3} + 17923 T^{4} + 17448 T^{5} + 1041080 T^{6} + 17448 p T^{7} + 17923 p^{2} T^{8} + 250 p^{3} T^{9} + 192 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} \)
53 \( 1 + 10 T + 225 T^{2} + 1956 T^{3} + 23880 T^{4} + 174814 T^{5} + 1566748 T^{6} + 174814 p T^{7} + 23880 p^{2} T^{8} + 1956 p^{3} T^{9} + 225 p^{4} T^{10} + 10 p^{5} T^{11} + p^{6} T^{12} \)
59 \( 1 + 14 T + 214 T^{2} + 2370 T^{3} + 25991 T^{4} + 223436 T^{5} + 1918964 T^{6} + 223436 p T^{7} + 25991 p^{2} T^{8} + 2370 p^{3} T^{9} + 214 p^{4} T^{10} + 14 p^{5} T^{11} + p^{6} T^{12} \)
61 \( 1 + 20 T + 263 T^{2} + 1898 T^{3} + 3984 T^{4} - 82348 T^{5} - 1046808 T^{6} - 82348 p T^{7} + 3984 p^{2} T^{8} + 1898 p^{3} T^{9} + 263 p^{4} T^{10} + 20 p^{5} T^{11} + p^{6} T^{12} \)
67 \( 1 + 6 T + 271 T^{2} + 1610 T^{3} + 35028 T^{4} + 188628 T^{5} + 2861664 T^{6} + 188628 p T^{7} + 35028 p^{2} T^{8} + 1610 p^{3} T^{9} + 271 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \)
71 \( 1 - 20 T + 446 T^{2} - 5884 T^{3} + 79003 T^{4} - 765512 T^{5} + 7422124 T^{6} - 765512 p T^{7} + 79003 p^{2} T^{8} - 5884 p^{3} T^{9} + 446 p^{4} T^{10} - 20 p^{5} T^{11} + p^{6} T^{12} \)
73 \( 1 + 6 T + 347 T^{2} + 1634 T^{3} + 53720 T^{4} + 200976 T^{5} + 4919912 T^{6} + 200976 p T^{7} + 53720 p^{2} T^{8} + 1634 p^{3} T^{9} + 347 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \)
79 \( 1 - 38 T + 740 T^{2} - 9566 T^{3} + 97155 T^{4} - 876392 T^{5} + 7764912 T^{6} - 876392 p T^{7} + 97155 p^{2} T^{8} - 9566 p^{3} T^{9} + 740 p^{4} T^{10} - 38 p^{5} T^{11} + p^{6} T^{12} \)
83 \( 1 + 16 T + 376 T^{2} + 5088 T^{3} + 66491 T^{4} + 748248 T^{5} + 7035736 T^{6} + 748248 p T^{7} + 66491 p^{2} T^{8} + 5088 p^{3} T^{9} + 376 p^{4} T^{10} + 16 p^{5} T^{11} + p^{6} T^{12} \)
89 \( 1 + 2 T + 196 T^{2} - 1210 T^{3} + 25163 T^{4} - 107880 T^{5} + 3544352 T^{6} - 107880 p T^{7} + 25163 p^{2} T^{8} - 1210 p^{3} T^{9} + 196 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} \)
97 \( 1 + 12 T + 435 T^{2} + 4682 T^{3} + 89128 T^{4} + 812778 T^{5} + 10912024 T^{6} + 812778 p T^{7} + 89128 p^{2} T^{8} + 4682 p^{3} T^{9} + 435 p^{4} T^{10} + 12 p^{5} T^{11} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.79010130937918531384185884124, −4.64583967108928208173105616143, −4.60509852463254499377347248010, −4.46514363856594506460521426989, −4.22666677029096058284846617511, −4.12243645778485355390197057914, −4.05801637100844488657570708476, −3.71213151463447537765040714096, −3.66405779871391285204216619620, −3.61581256567545850726217834206, −3.51128721028254343729343367741, −3.27348743740102993803666407799, −3.25428488127814956916713235484, −2.71870270576086624990711678566, −2.57430036359983230931619612475, −2.53025453737705424179845195768, −2.51267750702051329617440175156, −2.28602680729985539429309963429, −2.23942423771496700639826564725, −1.83320613593143170744321438761, −1.79856758786627696526464639547, −1.38313015777284111533198338154, −1.29517144764062230551391095014, −1.26873881143764741253856420567, −0.905558183652686095937116043584, 0, 0, 0, 0, 0, 0, 0.905558183652686095937116043584, 1.26873881143764741253856420567, 1.29517144764062230551391095014, 1.38313015777284111533198338154, 1.79856758786627696526464639547, 1.83320613593143170744321438761, 2.23942423771496700639826564725, 2.28602680729985539429309963429, 2.51267750702051329617440175156, 2.53025453737705424179845195768, 2.57430036359983230931619612475, 2.71870270576086624990711678566, 3.25428488127814956916713235484, 3.27348743740102993803666407799, 3.51128721028254343729343367741, 3.61581256567545850726217834206, 3.66405779871391285204216619620, 3.71213151463447537765040714096, 4.05801637100844488657570708476, 4.12243645778485355390197057914, 4.22666677029096058284846617511, 4.46514363856594506460521426989, 4.60509852463254499377347248010, 4.64583967108928208173105616143, 4.79010130937918531384185884124

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.