L(s) = 1 | + 2·3-s + 2·7-s − 2·9-s + 3·11-s − 3·13-s − 2·17-s + 6·19-s + 4·21-s + 4·23-s − 2·27-s + 7·29-s + 5·31-s + 6·33-s − 6·39-s + 11·41-s − 7·43-s + 20·47-s − 20·49-s − 4·51-s − 7·53-s + 12·57-s − 4·59-s + 13·61-s − 4·63-s + 25·67-s + 8·69-s + 29·71-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.755·7-s − 2/3·9-s + 0.904·11-s − 0.832·13-s − 0.485·17-s + 1.37·19-s + 0.872·21-s + 0.834·23-s − 0.384·27-s + 1.29·29-s + 0.898·31-s + 1.04·33-s − 0.960·39-s + 1.71·41-s − 1.06·43-s + 2.91·47-s − 2.85·49-s − 0.560·51-s − 0.961·53-s + 1.58·57-s − 0.520·59-s + 1.66·61-s − 0.503·63-s + 3.05·67-s + 0.963·69-s + 3.44·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(6.148446851\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.148446851\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( ( 1 - T )^{6} \) |
good | 3 | \( 1 - 2 T + 2 p T^{2} - 14 T^{3} + 8 p T^{4} - 40 T^{5} + 83 T^{6} - 40 p T^{7} + 8 p^{3} T^{8} - 14 p^{3} T^{9} + 2 p^{5} T^{10} - 2 p^{5} T^{11} + p^{6} T^{12} \) |
| 7 | \( 1 - 2 T + 24 T^{2} - 54 T^{3} + 318 T^{4} - 594 T^{5} + 2791 T^{6} - 594 p T^{7} + 318 p^{2} T^{8} - 54 p^{3} T^{9} + 24 p^{4} T^{10} - 2 p^{5} T^{11} + p^{6} T^{12} \) |
| 11 | \( 1 - 3 T + 14 T^{2} - 50 T^{3} + 433 T^{4} - 915 T^{5} + 3400 T^{6} - 915 p T^{7} + 433 p^{2} T^{8} - 50 p^{3} T^{9} + 14 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \) |
| 13 | \( 1 + 3 T + 35 T^{2} + 134 T^{3} + 790 T^{4} + 2388 T^{5} + 13141 T^{6} + 2388 p T^{7} + 790 p^{2} T^{8} + 134 p^{3} T^{9} + 35 p^{4} T^{10} + 3 p^{5} T^{11} + p^{6} T^{12} \) |
| 17 | \( 1 + 2 T + 40 T^{2} - 12 T^{3} + 422 T^{4} - 2878 T^{5} + 309 T^{6} - 2878 p T^{7} + 422 p^{2} T^{8} - 12 p^{3} T^{9} + 40 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} \) |
| 23 | \( 1 - 4 T + 96 T^{2} - 346 T^{3} + 4540 T^{4} - 14008 T^{5} + 131019 T^{6} - 14008 p T^{7} + 4540 p^{2} T^{8} - 346 p^{3} T^{9} + 96 p^{4} T^{10} - 4 p^{5} T^{11} + p^{6} T^{12} \) |
| 29 | \( 1 - 7 T + 101 T^{2} - 680 T^{3} + 6104 T^{4} - 32894 T^{5} + 218211 T^{6} - 32894 p T^{7} + 6104 p^{2} T^{8} - 680 p^{3} T^{9} + 101 p^{4} T^{10} - 7 p^{5} T^{11} + p^{6} T^{12} \) |
| 31 | \( 1 - 5 T + 116 T^{2} - 166 T^{3} + 4207 T^{4} + 9815 T^{5} + 97168 T^{6} + 9815 p T^{7} + 4207 p^{2} T^{8} - 166 p^{3} T^{9} + 116 p^{4} T^{10} - 5 p^{5} T^{11} + p^{6} T^{12} \) |
| 37 | \( 1 + 14 T^{2} + 189 T^{3} + 1675 T^{4} + 1758 T^{5} + 75767 T^{6} + 1758 p T^{7} + 1675 p^{2} T^{8} + 189 p^{3} T^{9} + 14 p^{4} T^{10} + p^{6} T^{12} \) |
| 41 | \( 1 - 11 T + 162 T^{2} - 1616 T^{3} + 14575 T^{4} - 107273 T^{5} + 784764 T^{6} - 107273 p T^{7} + 14575 p^{2} T^{8} - 1616 p^{3} T^{9} + 162 p^{4} T^{10} - 11 p^{5} T^{11} + p^{6} T^{12} \) |
| 43 | \( 1 + 7 T + p T^{2} + 530 T^{3} + 3441 T^{4} + 21767 T^{5} + 216350 T^{6} + 21767 p T^{7} + 3441 p^{2} T^{8} + 530 p^{3} T^{9} + p^{5} T^{10} + 7 p^{5} T^{11} + p^{6} T^{12} \) |
| 47 | \( 1 - 20 T + 294 T^{2} - 2363 T^{3} + 14371 T^{4} - 39728 T^{5} + 169611 T^{6} - 39728 p T^{7} + 14371 p^{2} T^{8} - 2363 p^{3} T^{9} + 294 p^{4} T^{10} - 20 p^{5} T^{11} + p^{6} T^{12} \) |
| 53 | \( 1 + 7 T + 286 T^{2} + 1674 T^{3} + 35709 T^{4} + 168565 T^{5} + 2474973 T^{6} + 168565 p T^{7} + 35709 p^{2} T^{8} + 1674 p^{3} T^{9} + 286 p^{4} T^{10} + 7 p^{5} T^{11} + p^{6} T^{12} \) |
| 59 | \( 1 + 4 T + 261 T^{2} + 825 T^{3} + 32193 T^{4} + 80901 T^{5} + 2380506 T^{6} + 80901 p T^{7} + 32193 p^{2} T^{8} + 825 p^{3} T^{9} + 261 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12} \) |
| 61 | \( 1 - 13 T + 246 T^{2} - 2418 T^{3} + 29973 T^{4} - 235869 T^{5} + 2276056 T^{6} - 235869 p T^{7} + 29973 p^{2} T^{8} - 2418 p^{3} T^{9} + 246 p^{4} T^{10} - 13 p^{5} T^{11} + p^{6} T^{12} \) |
| 67 | \( 1 - 25 T + 505 T^{2} - 6772 T^{3} + 80896 T^{4} - 773578 T^{5} + 6921907 T^{6} - 773578 p T^{7} + 80896 p^{2} T^{8} - 6772 p^{3} T^{9} + 505 p^{4} T^{10} - 25 p^{5} T^{11} + p^{6} T^{12} \) |
| 71 | \( 1 - 29 T + 603 T^{2} - 8526 T^{3} + 102909 T^{4} - 1014029 T^{5} + 9209494 T^{6} - 1014029 p T^{7} + 102909 p^{2} T^{8} - 8526 p^{3} T^{9} + 603 p^{4} T^{10} - 29 p^{5} T^{11} + p^{6} T^{12} \) |
| 73 | \( 1 + 19 T + 505 T^{2} + 6558 T^{3} + 98292 T^{4} + 932744 T^{5} + 9748099 T^{6} + 932744 p T^{7} + 98292 p^{2} T^{8} + 6558 p^{3} T^{9} + 505 p^{4} T^{10} + 19 p^{5} T^{11} + p^{6} T^{12} \) |
| 79 | \( 1 - 28 T + 659 T^{2} - 10371 T^{3} + 145815 T^{4} - 1597403 T^{5} + 15814250 T^{6} - 1597403 p T^{7} + 145815 p^{2} T^{8} - 10371 p^{3} T^{9} + 659 p^{4} T^{10} - 28 p^{5} T^{11} + p^{6} T^{12} \) |
| 83 | \( 1 + 15 T + 496 T^{2} + 5598 T^{3} + 100571 T^{4} + 875935 T^{5} + 11004272 T^{6} + 875935 p T^{7} + 100571 p^{2} T^{8} + 5598 p^{3} T^{9} + 496 p^{4} T^{10} + 15 p^{5} T^{11} + p^{6} T^{12} \) |
| 89 | \( 1 + 12 T + 317 T^{2} + 3161 T^{3} + 56077 T^{4} + 457091 T^{5} + 6094922 T^{6} + 457091 p T^{7} + 56077 p^{2} T^{8} + 3161 p^{3} T^{9} + 317 p^{4} T^{10} + 12 p^{5} T^{11} + p^{6} T^{12} \) |
| 97 | \( 1 + 13 T + 448 T^{2} + 3788 T^{3} + 80619 T^{4} + 494279 T^{5} + 9036752 T^{6} + 494279 p T^{7} + 80619 p^{2} T^{8} + 3788 p^{3} T^{9} + 448 p^{4} T^{10} + 13 p^{5} T^{11} + p^{6} T^{12} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.45040997678695802033102514524, −4.26604169880664857795514823217, −3.91965215741305841112004747577, −3.91009059759113642513190376919, −3.87591256873129994719364903588, −3.60527023038795655792325480298, −3.54029383780537204278981138292, −3.26712351296684983665926042148, −3.06957168552183725983460075786, −3.01961105908707122721732336403, −2.84648531516314083471311678631, −2.83285418013584139551665376052, −2.80356474828122038245967295239, −2.30558340894034523111948461928, −2.23953503904935581887515827131, −2.10314621713100250303358454587, −2.09420989209067728545821524998, −1.87928224516994065254934147239, −1.58445090308576382903331718354, −1.25483300358077305626455926866, −1.11192756158897836347224744797, −0.887365894869360830350045732636, −0.77733791059623886221413339592, −0.71925271457209539483102620124, −0.15782934661650433346010508998,
0.15782934661650433346010508998, 0.71925271457209539483102620124, 0.77733791059623886221413339592, 0.887365894869360830350045732636, 1.11192756158897836347224744797, 1.25483300358077305626455926866, 1.58445090308576382903331718354, 1.87928224516994065254934147239, 2.09420989209067728545821524998, 2.10314621713100250303358454587, 2.23953503904935581887515827131, 2.30558340894034523111948461928, 2.80356474828122038245967295239, 2.83285418013584139551665376052, 2.84648531516314083471311678631, 3.01961105908707122721732336403, 3.06957168552183725983460075786, 3.26712351296684983665926042148, 3.54029383780537204278981138292, 3.60527023038795655792325480298, 3.87591256873129994719364903588, 3.91009059759113642513190376919, 3.91965215741305841112004747577, 4.26604169880664857795514823217, 4.45040997678695802033102514524
Plot not available for L-functions of degree greater than 10.