L(s) = 1 | − 6·2-s + 21·4-s + 5·5-s + 4·7-s − 56·8-s − 30·10-s + 11-s − 2·13-s − 24·14-s + 126·16-s + 4·17-s − 3·19-s + 105·20-s − 6·22-s + 7·23-s + 19·25-s + 12·26-s + 84·28-s + 5·29-s + 28·31-s − 252·32-s − 24·34-s + 20·35-s − 9·37-s + 18·38-s − 280·40-s + 12·41-s + ⋯ |
L(s) = 1 | − 4.24·2-s + 21/2·4-s + 2.23·5-s + 1.51·7-s − 19.7·8-s − 9.48·10-s + 0.301·11-s − 0.554·13-s − 6.41·14-s + 63/2·16-s + 0.970·17-s − 0.688·19-s + 23.4·20-s − 1.27·22-s + 1.45·23-s + 19/5·25-s + 2.35·26-s + 15.8·28-s + 0.928·29-s + 5.02·31-s − 44.5·32-s − 4.11·34-s + 3.38·35-s − 1.47·37-s + 2.91·38-s − 44.2·40-s + 1.87·41-s + ⋯ |
Λ(s)=(=((26⋅318⋅76)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((26⋅318⋅76)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.126825419 |
L(21) |
≈ |
1.126825419 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+T)6 |
| 3 | 1 |
| 7 | 1−4T+2pT2−55T3+2p2T4−4p2T5+p3T6 |
good | 5 | 1−pT+6T2−T3+31T4−68T5+29T6−68pT7+31p2T8−p3T9+6p4T10−p6T11+p6T12 |
| 11 | 1−T−6T2+103T3−83T4−32pT5+457pT6−32p2T7−83p2T8+103p3T9−6p4T10−p5T11+p6T12 |
| 13 | 1+2T−32T2−2pT3+730T4+230T5−10729T6+230pT7+730p2T8−2p4T9−32p4T10+2p5T11+p6T12 |
| 17 | 1−4T+9T2−92T3+58T4+20T5+5393T6+20pT7+58p2T8−92p3T9+9p4T10−4p5T11+p6T12 |
| 19 | 1+3T−42T2−61T3+69pT4+726T5−27501T6+726pT7+69p3T8−61p3T9−42p4T10+3p5T11+p6T12 |
| 23 | 1−7T−24T2+127T3+1417T4−3484T5−22393T6−3484pT7+1417p2T8+127p3T9−24p4T10−7p5T11+p6T12 |
| 29 | 1−5T−30T2+371T3−185T4−6020T5+44357T6−6020pT7−185p2T8+371p3T9−30p4T10−5p5T11+p6T12 |
| 31 | (1−14T+138T2−841T3+138pT4−14p2T5+p3T6)2 |
| 37 | 1+9T−21T2−268T3+1293T4+4875T5−42882T6+4875pT7+1293p2T8−268p3T9−21p4T10+9p5T11+p6T12 |
| 41 | 1−12T−18T2+78T3+7470T4−24546T5−158105T6−24546pT7+7470p2T8+78p3T9−18p4T10−12p5T11+p6T12 |
| 43 | 1−18T+114T2−682T3+7188T4−33492T5+63039T6−33492pT7+7188p2T8−682p3T9+114p4T10−18p5T11+p6T12 |
| 47 | (1−3T+117T2−309T3+117pT4−3p2T5+p3T6)2 |
| 53 | 1+9T−36T2−873T3−1179T4+26334T5+272077T6+26334pT7−1179p2T8−873p3T9−36p4T10+9p5T11+p6T12 |
| 59 | (1−4T+76T2−11pT3+76pT4−4p2T5+p3T6)2 |
| 61 | (1+4T+48T2−229T3+48pT4+4p2T5+p3T6)2 |
| 67 | (1+5T+143T2+521T3+143pT4+5p2T5+p3T6)2 |
| 71 | (1+7T+163T2+895T3+163pT4+7p2T5+p3T6)2 |
| 73 | 1+25T+254T2+2073T3+20533T4+115046T5+366817T6+115046pT7+20533p2T8+2073p3T9+254p4T10+25p5T11+p6T12 |
| 79 | (1+7T+93T2+335T3+93pT4+7p2T5+p3T6)2 |
| 83 | 1+8T−180T2−518T3+29404T4+32420T5−2713585T6+32420pT7+29404p2T8−518p3T9−180p4T10+8p5T11+p6T12 |
| 89 | 1−9T−180T2+729T3+31041T4−54846T5−2925911T6−54846pT7+31041p2T8+729p3T9−180p4T10−9p5T11+p6T12 |
| 97 | 1+28T+257T2+2820T3+59506T4+545924T5+3126001T6+545924pT7+59506p2T8+2820p3T9+257p4T10+28p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.35267916410940766044169833535, −6.00702798748693717238636081135, −5.98877348263525930353623735776, −5.88147479707962295150086703306, −5.65919337235591364058034300382, −5.42014497308620620823936540920, −5.35586854944625954041454332849, −4.79589134688594176208177987037, −4.70626990288551518663047795372, −4.65111648849481329150113311472, −4.45702528389346279096867222059, −4.02227332237227663362504615260, −3.98063074580587535247293918254, −3.10764862115675558093630375663, −2.96157656912337613156547855326, −2.85955897377796404726866282930, −2.83395170584456424428951862227, −2.67522571548593585623230381822, −2.32773581164894388700557918850, −1.90745923851789441139476388489, −1.74795103451137140832114710543, −1.45791199851360867375119771818, −1.09855602244758995650226951663, −1.07986844095079761630771642186, −0.71931949668298495679503022046,
0.71931949668298495679503022046, 1.07986844095079761630771642186, 1.09855602244758995650226951663, 1.45791199851360867375119771818, 1.74795103451137140832114710543, 1.90745923851789441139476388489, 2.32773581164894388700557918850, 2.67522571548593585623230381822, 2.83395170584456424428951862227, 2.85955897377796404726866282930, 2.96157656912337613156547855326, 3.10764862115675558093630375663, 3.98063074580587535247293918254, 4.02227332237227663362504615260, 4.45702528389346279096867222059, 4.65111648849481329150113311472, 4.70626990288551518663047795372, 4.79589134688594176208177987037, 5.35586854944625954041454332849, 5.42014497308620620823936540920, 5.65919337235591364058034300382, 5.88147479707962295150086703306, 5.98877348263525930353623735776, 6.00702798748693717238636081135, 6.35267916410940766044169833535
Plot not available for L-functions of degree greater than 10.