L(s) = 1 | + 2·8-s − 3·17-s + 3·19-s + 6·53-s + 64-s − 12·107-s − 6·109-s + 125-s + 127-s + 131-s − 6·136-s + 137-s + 139-s + 149-s + 151-s + 6·152-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 2·8-s − 3·17-s + 3·19-s + 6·53-s + 64-s − 12·107-s − 6·109-s + 125-s + 127-s + 131-s − 6·136-s + 137-s + 139-s + 149-s + 151-s + 6·152-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{36} \cdot 5^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{36} \cdot 5^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.029683501\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.029683501\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - T^{3} + T^{6} \) |
good | 2 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 7 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 11 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 13 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 17 | \( ( 1 + T )^{6}( 1 - T + T^{2} )^{3} \) |
| 19 | \( ( 1 - T )^{6}( 1 + T + T^{2} )^{3} \) |
| 23 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 29 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 31 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 37 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 41 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 43 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 47 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 53 | \( ( 1 - T + T^{2} )^{6} \) |
| 59 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 61 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 67 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 71 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 73 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 79 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 83 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 89 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 97 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.44087938284334154727833098831, −4.34898727848242622195522475595, −4.31750946943726764677477736109, −4.17674372787268232015863668044, −4.01776355698430683460293546805, −3.99039677008518975206402101424, −3.90032189161582702662827503091, −3.77420088841146591466932320896, −3.33987648672607902671165217875, −3.33892953620750641831089407186, −3.20001487732255687435525563163, −2.90350869716948366315388397841, −2.77139293116896321575422762839, −2.50627194864857714700282749014, −2.43463959472793624754975509714, −2.33101783473370229030080001275, −2.30777041134171095976415363702, −2.24060517984886462858065627985, −1.51221687213511594313654647007, −1.50762449235076007186700718727, −1.40083980596807246969160995650, −1.34595772554037149266735576167, −1.21456077561508205553633504705, −0.77014015216994414075940004411, −0.40325269430920316962504812392,
0.40325269430920316962504812392, 0.77014015216994414075940004411, 1.21456077561508205553633504705, 1.34595772554037149266735576167, 1.40083980596807246969160995650, 1.50762449235076007186700718727, 1.51221687213511594313654647007, 2.24060517984886462858065627985, 2.30777041134171095976415363702, 2.33101783473370229030080001275, 2.43463959472793624754975509714, 2.50627194864857714700282749014, 2.77139293116896321575422762839, 2.90350869716948366315388397841, 3.20001487732255687435525563163, 3.33892953620750641831089407186, 3.33987648672607902671165217875, 3.77420088841146591466932320896, 3.90032189161582702662827503091, 3.99039677008518975206402101424, 4.01776355698430683460293546805, 4.17674372787268232015863668044, 4.31750946943726764677477736109, 4.34898727848242622195522475595, 4.44087938284334154727833098831
Plot not available for L-functions of degree greater than 10.