Properties

Label 12-315e6-1.1-c9e6-0-0
Degree $12$
Conductor $9.769\times 10^{14}$
Sign $1$
Analytic cond. $1.82342\times 10^{13}$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 15·2-s + 81·4-s − 3.75e3·5-s − 1.44e4·7-s − 4.87e3·8-s + 5.62e4·10-s + 4.77e4·11-s + 1.02e5·13-s + 2.16e5·14-s + 2.78e5·16-s + 3.84e4·17-s + 3.61e5·19-s − 3.03e5·20-s − 7.16e5·22-s − 6.97e5·23-s + 8.20e6·25-s − 1.53e6·26-s − 1.16e6·28-s − 1.60e7·29-s + 1.36e6·31-s − 1.01e6·32-s − 5.77e5·34-s + 5.40e7·35-s − 3.91e6·37-s − 5.41e6·38-s + 1.82e7·40-s − 2.24e7·41-s + ⋯
L(s)  = 1  − 0.662·2-s + 0.158·4-s − 2.68·5-s − 2.26·7-s − 0.420·8-s + 1.77·10-s + 0.984·11-s + 0.992·13-s + 1.50·14-s + 1.06·16-s + 0.111·17-s + 0.635·19-s − 0.424·20-s − 0.652·22-s − 0.519·23-s + 21/5·25-s − 0.657·26-s − 0.358·28-s − 4.20·29-s + 0.265·31-s − 0.170·32-s − 0.0740·34-s + 6.08·35-s − 0.343·37-s − 0.421·38-s + 1.12·40-s − 1.24·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 5^{6} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 5^{6} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(3^{12} \cdot 5^{6} \cdot 7^{6}\)
Sign: $1$
Analytic conductor: \(1.82342\times 10^{13}\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 3^{12} \cdot 5^{6} \cdot 7^{6} ,\ ( \ : [9/2]^{6} ),\ 1 )\)

Particular Values

\(L(5)\) \(\approx\) \(0.1309022875\)
\(L(\frac12)\) \(\approx\) \(0.1309022875\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( ( 1 + p^{4} T )^{6} \)
7 \( ( 1 + p^{4} T )^{6} \)
good2 \( 1 + 15 T + 9 p^{4} T^{2} + 2911 p T^{3} - 32415 p^{2} T^{4} - 152505 p^{5} T^{5} + 701781 p^{6} T^{6} - 152505 p^{14} T^{7} - 32415 p^{20} T^{8} + 2911 p^{28} T^{9} + 9 p^{40} T^{10} + 15 p^{45} T^{11} + p^{54} T^{12} \)
11 \( 1 - 47796 T + 8379830664 T^{2} - 270782212098536 T^{3} + 35489011284799449744 T^{4} - \)\(95\!\cdots\!20\)\( T^{5} + \)\(10\!\cdots\!58\)\( T^{6} - \)\(95\!\cdots\!20\)\( p^{9} T^{7} + 35489011284799449744 p^{18} T^{8} - 270782212098536 p^{27} T^{9} + 8379830664 p^{36} T^{10} - 47796 p^{45} T^{11} + p^{54} T^{12} \)
13 \( 1 - 102168 T + 43775548728 T^{2} - 3697743349958732 T^{3} + \)\(90\!\cdots\!36\)\( T^{4} - \)\(63\!\cdots\!40\)\( T^{5} + \)\(11\!\cdots\!26\)\( T^{6} - \)\(63\!\cdots\!40\)\( p^{9} T^{7} + \)\(90\!\cdots\!36\)\( p^{18} T^{8} - 3697743349958732 p^{27} T^{9} + 43775548728 p^{36} T^{10} - 102168 p^{45} T^{11} + p^{54} T^{12} \)
17 \( 1 - 38472 T + 422077582368 T^{2} - 57913193733474572 T^{3} + \)\(81\!\cdots\!72\)\( T^{4} - \)\(17\!\cdots\!08\)\( T^{5} + \)\(10\!\cdots\!62\)\( T^{6} - \)\(17\!\cdots\!08\)\( p^{9} T^{7} + \)\(81\!\cdots\!72\)\( p^{18} T^{8} - 57913193733474572 p^{27} T^{9} + 422077582368 p^{36} T^{10} - 38472 p^{45} T^{11} + p^{54} T^{12} \)
19 \( 1 - 361056 T + 966857741034 T^{2} - 352940649239794944 T^{3} + \)\(59\!\cdots\!75\)\( T^{4} - \)\(96\!\cdots\!12\)\( p T^{5} + \)\(22\!\cdots\!40\)\( T^{6} - \)\(96\!\cdots\!12\)\( p^{10} T^{7} + \)\(59\!\cdots\!75\)\( p^{18} T^{8} - 352940649239794944 p^{27} T^{9} + 966857741034 p^{36} T^{10} - 361056 p^{45} T^{11} + p^{54} T^{12} \)
23 \( 1 + 697032 T + 3741541369650 T^{2} + 1347501248298667768 T^{3} + \)\(50\!\cdots\!51\)\( T^{4} - \)\(45\!\cdots\!24\)\( T^{5} + \)\(50\!\cdots\!84\)\( T^{6} - \)\(45\!\cdots\!24\)\( p^{9} T^{7} + \)\(50\!\cdots\!51\)\( p^{18} T^{8} + 1347501248298667768 p^{27} T^{9} + 3741541369650 p^{36} T^{10} + 697032 p^{45} T^{11} + p^{54} T^{12} \)
29 \( 1 + 552696 p T + 166361093577864 T^{2} + \)\(12\!\cdots\!76\)\( T^{3} + \)\(70\!\cdots\!40\)\( T^{4} + \)\(33\!\cdots\!12\)\( T^{5} + \)\(13\!\cdots\!30\)\( T^{6} + \)\(33\!\cdots\!12\)\( p^{9} T^{7} + \)\(70\!\cdots\!40\)\( p^{18} T^{8} + \)\(12\!\cdots\!76\)\( p^{27} T^{9} + 166361093577864 p^{36} T^{10} + 552696 p^{46} T^{11} + p^{54} T^{12} \)
31 \( 1 - 1362912 T + 81684677462154 T^{2} - \)\(24\!\cdots\!40\)\( T^{3} + \)\(35\!\cdots\!95\)\( T^{4} - \)\(13\!\cdots\!60\)\( T^{5} + \)\(10\!\cdots\!84\)\( T^{6} - \)\(13\!\cdots\!60\)\( p^{9} T^{7} + \)\(35\!\cdots\!95\)\( p^{18} T^{8} - \)\(24\!\cdots\!40\)\( p^{27} T^{9} + 81684677462154 p^{36} T^{10} - 1362912 p^{45} T^{11} + p^{54} T^{12} \)
37 \( 1 + 3912924 T + 195045151243146 T^{2} + \)\(17\!\cdots\!52\)\( T^{3} + \)\(41\!\cdots\!39\)\( T^{4} + \)\(39\!\cdots\!60\)\( T^{5} + \)\(42\!\cdots\!48\)\( T^{6} + \)\(39\!\cdots\!60\)\( p^{9} T^{7} + \)\(41\!\cdots\!39\)\( p^{18} T^{8} + \)\(17\!\cdots\!52\)\( p^{27} T^{9} + 195045151243146 p^{36} T^{10} + 3912924 p^{45} T^{11} + p^{54} T^{12} \)
41 \( 1 + 22452756 T + 1622036797695018 T^{2} + \)\(28\!\cdots\!00\)\( T^{3} + \)\(11\!\cdots\!95\)\( T^{4} + \)\(16\!\cdots\!44\)\( T^{5} + \)\(45\!\cdots\!32\)\( T^{6} + \)\(16\!\cdots\!44\)\( p^{9} T^{7} + \)\(11\!\cdots\!95\)\( p^{18} T^{8} + \)\(28\!\cdots\!00\)\( p^{27} T^{9} + 1622036797695018 p^{36} T^{10} + 22452756 p^{45} T^{11} + p^{54} T^{12} \)
43 \( 1 + 29998992 T + 2380551033522234 T^{2} + \)\(60\!\cdots\!60\)\( T^{3} + \)\(26\!\cdots\!11\)\( T^{4} + \)\(54\!\cdots\!52\)\( T^{5} + \)\(17\!\cdots\!48\)\( T^{6} + \)\(54\!\cdots\!52\)\( p^{9} T^{7} + \)\(26\!\cdots\!11\)\( p^{18} T^{8} + \)\(60\!\cdots\!60\)\( p^{27} T^{9} + 2380551033522234 p^{36} T^{10} + 29998992 p^{45} T^{11} + p^{54} T^{12} \)
47 \( 1 - 121271508 T + 9406050408578688 T^{2} - \)\(46\!\cdots\!04\)\( T^{3} + \)\(18\!\cdots\!00\)\( T^{4} - \)\(56\!\cdots\!04\)\( T^{5} + \)\(18\!\cdots\!86\)\( T^{6} - \)\(56\!\cdots\!04\)\( p^{9} T^{7} + \)\(18\!\cdots\!00\)\( p^{18} T^{8} - \)\(46\!\cdots\!04\)\( p^{27} T^{9} + 9406050408578688 p^{36} T^{10} - 121271508 p^{45} T^{11} + p^{54} T^{12} \)
53 \( 1 - 20308596 T + 5609660587202082 T^{2} - \)\(89\!\cdots\!80\)\( T^{3} + \)\(39\!\cdots\!59\)\( T^{4} - \)\(49\!\cdots\!56\)\( T^{5} + \)\(12\!\cdots\!84\)\( T^{6} - \)\(49\!\cdots\!56\)\( p^{9} T^{7} + \)\(39\!\cdots\!59\)\( p^{18} T^{8} - \)\(89\!\cdots\!80\)\( p^{27} T^{9} + 5609660587202082 p^{36} T^{10} - 20308596 p^{45} T^{11} + p^{54} T^{12} \)
59 \( 1 + 120280392 T + 26534507921192850 T^{2} + \)\(30\!\cdots\!60\)\( T^{3} + \)\(44\!\cdots\!31\)\( T^{4} + \)\(40\!\cdots\!60\)\( T^{5} + \)\(45\!\cdots\!56\)\( T^{6} + \)\(40\!\cdots\!60\)\( p^{9} T^{7} + \)\(44\!\cdots\!31\)\( p^{18} T^{8} + \)\(30\!\cdots\!60\)\( p^{27} T^{9} + 26534507921192850 p^{36} T^{10} + 120280392 p^{45} T^{11} + p^{54} T^{12} \)
61 \( 1 + 87693540 T + 25065803466079746 T^{2} + \)\(18\!\cdots\!12\)\( T^{3} + \)\(47\!\cdots\!23\)\( T^{4} + \)\(34\!\cdots\!48\)\( T^{5} + \)\(69\!\cdots\!60\)\( T^{6} + \)\(34\!\cdots\!48\)\( p^{9} T^{7} + \)\(47\!\cdots\!23\)\( p^{18} T^{8} + \)\(18\!\cdots\!12\)\( p^{27} T^{9} + 25065803466079746 p^{36} T^{10} + 87693540 p^{45} T^{11} + p^{54} T^{12} \)
67 \( 1 - 495050664 T + 239003350816184034 T^{2} - \)\(71\!\cdots\!80\)\( T^{3} + \)\(19\!\cdots\!83\)\( T^{4} - \)\(40\!\cdots\!64\)\( T^{5} + \)\(74\!\cdots\!48\)\( T^{6} - \)\(40\!\cdots\!64\)\( p^{9} T^{7} + \)\(19\!\cdots\!83\)\( p^{18} T^{8} - \)\(71\!\cdots\!80\)\( p^{27} T^{9} + 239003350816184034 p^{36} T^{10} - 495050664 p^{45} T^{11} + p^{54} T^{12} \)
71 \( 1 + 253762512 T + 152405832326709738 T^{2} + \)\(48\!\cdots\!44\)\( p T^{3} + \)\(86\!\cdots\!79\)\( T^{4} + \)\(20\!\cdots\!24\)\( T^{5} + \)\(34\!\cdots\!84\)\( T^{6} + \)\(20\!\cdots\!24\)\( p^{9} T^{7} + \)\(86\!\cdots\!79\)\( p^{18} T^{8} + \)\(48\!\cdots\!44\)\( p^{28} T^{9} + 152405832326709738 p^{36} T^{10} + 253762512 p^{45} T^{11} + p^{54} T^{12} \)
73 \( 1 - 187195308 T + 219035051028369810 T^{2} - \)\(34\!\cdots\!92\)\( T^{3} + \)\(24\!\cdots\!63\)\( T^{4} - \)\(33\!\cdots\!04\)\( T^{5} + \)\(17\!\cdots\!36\)\( T^{6} - \)\(33\!\cdots\!04\)\( p^{9} T^{7} + \)\(24\!\cdots\!63\)\( p^{18} T^{8} - \)\(34\!\cdots\!92\)\( p^{27} T^{9} + 219035051028369810 p^{36} T^{10} - 187195308 p^{45} T^{11} + p^{54} T^{12} \)
79 \( 1 - 831079500 T + 689785417883020464 T^{2} - \)\(34\!\cdots\!44\)\( T^{3} + \)\(18\!\cdots\!80\)\( T^{4} - \)\(71\!\cdots\!08\)\( T^{5} + \)\(28\!\cdots\!50\)\( T^{6} - \)\(71\!\cdots\!08\)\( p^{9} T^{7} + \)\(18\!\cdots\!80\)\( p^{18} T^{8} - \)\(34\!\cdots\!44\)\( p^{27} T^{9} + 689785417883020464 p^{36} T^{10} - 831079500 p^{45} T^{11} + p^{54} T^{12} \)
83 \( 1 - 767650536 T + 1190415298294226274 T^{2} - \)\(67\!\cdots\!68\)\( T^{3} + \)\(68\!\cdots\!89\)\( p T^{4} - \)\(24\!\cdots\!28\)\( T^{5} + \)\(14\!\cdots\!32\)\( T^{6} - \)\(24\!\cdots\!28\)\( p^{9} T^{7} + \)\(68\!\cdots\!89\)\( p^{19} T^{8} - \)\(67\!\cdots\!68\)\( p^{27} T^{9} + 1190415298294226274 p^{36} T^{10} - 767650536 p^{45} T^{11} + p^{54} T^{12} \)
89 \( 1 + 582579684 T + 878699529449962794 T^{2} + \)\(31\!\cdots\!36\)\( T^{3} + \)\(36\!\cdots\!75\)\( T^{4} + \)\(12\!\cdots\!32\)\( T^{5} + \)\(14\!\cdots\!80\)\( T^{6} + \)\(12\!\cdots\!32\)\( p^{9} T^{7} + \)\(36\!\cdots\!75\)\( p^{18} T^{8} + \)\(31\!\cdots\!36\)\( p^{27} T^{9} + 878699529449962794 p^{36} T^{10} + 582579684 p^{45} T^{11} + p^{54} T^{12} \)
97 \( 1 + 1184506872 T + 3794394595772867376 T^{2} + \)\(34\!\cdots\!24\)\( T^{3} + \)\(62\!\cdots\!12\)\( T^{4} + \)\(44\!\cdots\!16\)\( T^{5} + \)\(59\!\cdots\!78\)\( T^{6} + \)\(44\!\cdots\!16\)\( p^{9} T^{7} + \)\(62\!\cdots\!12\)\( p^{18} T^{8} + \)\(34\!\cdots\!24\)\( p^{27} T^{9} + 3794394595772867376 p^{36} T^{10} + 1184506872 p^{45} T^{11} + p^{54} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.89363408812390920653629018916, −4.25563721137793781095466828921, −4.17710140888504093866311741419, −4.07993401690275832181001147914, −3.96985046604009741069537525128, −3.78550401374780978299405977893, −3.77693023138087044460310282331, −3.37898612108586665386963434299, −3.28488951998960178725969999844, −3.27366084986169726547234889647, −3.27088454174389827485382927096, −2.72079265643569120408344425740, −2.54034599117574784892349132871, −2.37798421878067939274000366891, −2.26616908005165407343441530810, −1.81555022666745908335878497959, −1.55603833284047938926997592932, −1.51472792215518778092160261681, −1.22219382139851094785246223616, −1.03761804352575039971779289410, −0.74095438456204885821495939586, −0.56774318216948714214053320791, −0.49491906700560086597567054399, −0.25020778936009660289781570100, −0.06484659252025662631781712638, 0.06484659252025662631781712638, 0.25020778936009660289781570100, 0.49491906700560086597567054399, 0.56774318216948714214053320791, 0.74095438456204885821495939586, 1.03761804352575039971779289410, 1.22219382139851094785246223616, 1.51472792215518778092160261681, 1.55603833284047938926997592932, 1.81555022666745908335878497959, 2.26616908005165407343441530810, 2.37798421878067939274000366891, 2.54034599117574784892349132871, 2.72079265643569120408344425740, 3.27088454174389827485382927096, 3.27366084986169726547234889647, 3.28488951998960178725969999844, 3.37898612108586665386963434299, 3.77693023138087044460310282331, 3.78550401374780978299405977893, 3.96985046604009741069537525128, 4.07993401690275832181001147914, 4.17710140888504093866311741419, 4.25563721137793781095466828921, 4.89363408812390920653629018916

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.