Properties

Label 12-2340e6-1.1-c1e6-0-3
Degree $12$
Conductor $1.642\times 10^{20}$
Sign $1$
Analytic cond. $4.25557\times 10^{7}$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·23-s − 3·25-s + 12·29-s + 12·43-s + 18·49-s + 12·53-s − 12·61-s − 24·79-s − 12·101-s + 24·103-s − 60·107-s − 48·113-s + 30·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 9·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 2.50·23-s − 3/5·25-s + 2.22·29-s + 1.82·43-s + 18/7·49-s + 1.64·53-s − 1.53·61-s − 2.70·79-s − 1.19·101-s + 2.36·103-s − 5.80·107-s − 4.51·113-s + 2.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 9/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{12} \cdot 5^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{12} \cdot 5^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{12} \cdot 3^{12} \cdot 5^{6} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(4.25557\times 10^{7}\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{12} \cdot 3^{12} \cdot 5^{6} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(9.858005509\)
\(L(\frac12)\) \(\approx\) \(9.858005509\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( ( 1 + T^{2} )^{3} \)
13 \( 1 - 9 T^{2} - 16 T^{3} - 9 p T^{4} + p^{3} T^{6} \)
good7 \( 1 - 18 T^{2} + 207 T^{4} - 1676 T^{6} + 207 p^{2} T^{8} - 18 p^{4} T^{10} + p^{6} T^{12} \)
11 \( 1 - 30 T^{2} + 447 T^{4} - 4912 T^{6} + 447 p^{2} T^{8} - 30 p^{4} T^{10} + p^{6} T^{12} \)
17 \( ( 1 + p T^{2} )^{6} \)
19 \( 1 - 18 T^{2} + 423 T^{4} - 200 p T^{6} + 423 p^{2} T^{8} - 18 p^{4} T^{10} + p^{6} T^{12} \)
23 \( ( 1 - 6 T + 39 T^{2} - 102 T^{3} + 39 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
29 \( ( 1 - 6 T + 75 T^{2} - 264 T^{3} + 75 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( 1 - 126 T^{2} + 7911 T^{4} - 303536 T^{6} + 7911 p^{2} T^{8} - 126 p^{4} T^{10} + p^{6} T^{12} \)
37 \( 1 - 78 T^{2} + 5271 T^{4} - 214292 T^{6} + 5271 p^{2} T^{8} - 78 p^{4} T^{10} + p^{6} T^{12} \)
41 \( 1 - 138 T^{2} + 9663 T^{4} - 461068 T^{6} + 9663 p^{2} T^{8} - 138 p^{4} T^{10} + p^{6} T^{12} \)
43 \( ( 1 - 6 T + 87 T^{2} - 470 T^{3} + 87 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 - 66 T^{2} + 5055 T^{4} - 172204 T^{6} + 5055 p^{2} T^{8} - 66 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 - 6 T + 75 T^{2} - 660 T^{3} + 75 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
59 \( 1 - 138 T^{2} + 13767 T^{4} - 903112 T^{6} + 13767 p^{2} T^{8} - 138 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 + 6 T + 87 T^{2} + 200 T^{3} + 87 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 162 T^{2} + 19431 T^{4} - 1405100 T^{6} + 19431 p^{2} T^{8} - 162 p^{4} T^{10} + p^{6} T^{12} \)
71 \( 1 + 6 T^{2} - 417 T^{4} - 224296 T^{6} - 417 p^{2} T^{8} + 6 p^{4} T^{10} + p^{6} T^{12} \)
73 \( 1 - 150 T^{2} + 4479 T^{4} + 230236 T^{6} + 4479 p^{2} T^{8} - 150 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 12 T + 93 T^{2} + 200 T^{3} + 93 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 354 T^{2} + 61575 T^{4} - 6424108 T^{6} + 61575 p^{2} T^{8} - 354 p^{4} T^{10} + p^{6} T^{12} \)
89 \( 1 + 42 T^{2} + 10527 T^{4} + 115148 T^{6} + 10527 p^{2} T^{8} + 42 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 - 378 T^{2} + 64719 T^{4} - 7267052 T^{6} + 64719 p^{2} T^{8} - 378 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.60323282406559557783553497683, −4.37462638138323592390887030435, −4.36266850789710813432278711129, −4.34210460240264325268139481714, −4.09743838947792036830666820661, −4.02234230883297574561943222161, −3.98554237600106455541338146060, −3.38539307946793023244940068001, −3.34051081124038372810486673851, −3.33049680801616701805898349897, −3.12920944726107936351752383177, −2.92222282986635740207571752738, −2.79271107119581150177020004287, −2.67650521428190262149444669977, −2.52274854458130399872027337840, −2.37715235556412357354197549621, −1.98572615896784423909858631651, −1.84506365372706266855900247477, −1.84166882085968093845363408931, −1.33110058829819225830442540080, −1.29353098398290518875738647531, −0.952613530724991696520135973400, −0.813781680327905000814484323365, −0.56517850377417058969483218714, −0.39019458919118241315971819499, 0.39019458919118241315971819499, 0.56517850377417058969483218714, 0.813781680327905000814484323365, 0.952613530724991696520135973400, 1.29353098398290518875738647531, 1.33110058829819225830442540080, 1.84166882085968093845363408931, 1.84506365372706266855900247477, 1.98572615896784423909858631651, 2.37715235556412357354197549621, 2.52274854458130399872027337840, 2.67650521428190262149444669977, 2.79271107119581150177020004287, 2.92222282986635740207571752738, 3.12920944726107936351752383177, 3.33049680801616701805898349897, 3.34051081124038372810486673851, 3.38539307946793023244940068001, 3.98554237600106455541338146060, 4.02234230883297574561943222161, 4.09743838947792036830666820661, 4.34210460240264325268139481714, 4.36266850789710813432278711129, 4.37462638138323592390887030435, 4.60323282406559557783553497683

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.