Properties

Label 12-21e12-1.1-c5e6-0-1
Degree $12$
Conductor $7.356\times 10^{15}$
Sign $1$
Analytic cond. $1.25197\times 10^{11}$
Root an. cond. $8.41006$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 19·4-s + 100·5-s + 100·8-s − 200·10-s − 604·11-s − 1.35e3·13-s + 5·16-s + 3.02e3·17-s − 1.72e3·19-s − 1.90e3·20-s + 1.20e3·22-s + 4.48e3·23-s − 1.97e3·25-s + 2.70e3·26-s + 5.32e3·29-s − 3.97e3·31-s + 5.30e3·32-s − 6.05e3·34-s + 2.26e4·37-s + 3.45e3·38-s + 1.00e4·40-s + 2.87e4·41-s − 6.76e3·43-s + 1.14e4·44-s − 8.96e3·46-s + 5.15e4·47-s + ⋯
L(s)  = 1  − 0.353·2-s − 0.593·4-s + 1.78·5-s + 0.552·8-s − 0.632·10-s − 1.50·11-s − 2.21·13-s + 0.00488·16-s + 2.54·17-s − 1.09·19-s − 1.06·20-s + 0.532·22-s + 1.76·23-s − 0.631·25-s + 0.784·26-s + 1.17·29-s − 0.743·31-s + 0.915·32-s − 0.898·34-s + 2.72·37-s + 0.388·38-s + 0.988·40-s + 2.67·41-s − 0.558·43-s + 0.893·44-s − 0.624·46-s + 3.40·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(3^{12} \cdot 7^{12}\)
Sign: $1$
Analytic conductor: \(1.25197\times 10^{11}\)
Root analytic conductor: \(8.41006\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{441} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 3^{12} \cdot 7^{12} ,\ ( \ : [5/2]^{6} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(4.339792247\)
\(L(\frac12)\) \(\approx\) \(4.339792247\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + p T + 23 T^{2} - p^{4} T^{3} + 25 p^{3} T^{4} - 235 p^{5} T^{5} - 1241 p^{4} T^{6} - 235 p^{10} T^{7} + 25 p^{13} T^{8} - p^{19} T^{9} + 23 p^{20} T^{10} + p^{26} T^{11} + p^{30} T^{12} \)
5 \( 1 - 4 p^{2} T + 11972 T^{2} - 911188 T^{3} + 71428667 T^{4} - 4618786664 T^{5} + 283606162312 T^{6} - 4618786664 p^{5} T^{7} + 71428667 p^{10} T^{8} - 911188 p^{15} T^{9} + 11972 p^{20} T^{10} - 4 p^{27} T^{11} + p^{30} T^{12} \)
11 \( 1 + 604 T + 465470 T^{2} + 126422564 T^{3} + 54553413495 T^{4} - 2126286797512 T^{5} + 1724800346353156 T^{6} - 2126286797512 p^{5} T^{7} + 54553413495 p^{10} T^{8} + 126422564 p^{15} T^{9} + 465470 p^{20} T^{10} + 604 p^{25} T^{11} + p^{30} T^{12} \)
13 \( 1 + 8 p^{2} T + 2101160 T^{2} + 1701654952 T^{3} + 1567459550619 T^{4} + 957961480510864 T^{5} + 695838444947896272 T^{6} + 957961480510864 p^{5} T^{7} + 1567459550619 p^{10} T^{8} + 1701654952 p^{15} T^{9} + 2101160 p^{20} T^{10} + 8 p^{27} T^{11} + p^{30} T^{12} \)
17 \( 1 - 3028 T + 9480044 T^{2} - 16573942004 T^{3} + 30101485361331 T^{4} - 38257820797073480 T^{5} + 3111964669826641688 p T^{6} - 38257820797073480 p^{5} T^{7} + 30101485361331 p^{10} T^{8} - 16573942004 p^{15} T^{9} + 9480044 p^{20} T^{10} - 3028 p^{25} T^{11} + p^{30} T^{12} \)
19 \( 1 + 1728 T + 362526 p T^{2} + 10046617920 T^{3} + 29965558163367 T^{4} + 38539774127461248 T^{5} + 90560842902848100108 T^{6} + 38539774127461248 p^{5} T^{7} + 29965558163367 p^{10} T^{8} + 10046617920 p^{15} T^{9} + 362526 p^{21} T^{10} + 1728 p^{25} T^{11} + p^{30} T^{12} \)
23 \( 1 - 4484 T + 18866246 T^{2} - 54000132140 T^{3} + 162349820698943 T^{4} - 365036667648018376 T^{5} + \)\(10\!\cdots\!56\)\( T^{6} - 365036667648018376 p^{5} T^{7} + 162349820698943 p^{10} T^{8} - 54000132140 p^{15} T^{9} + 18866246 p^{20} T^{10} - 4484 p^{25} T^{11} + p^{30} T^{12} \)
29 \( 1 - 5320 T + 81920486 T^{2} - 415516942408 T^{3} + 3329157696001607 T^{4} - 14790454945150175696 T^{5} + \)\(84\!\cdots\!28\)\( T^{6} - 14790454945150175696 p^{5} T^{7} + 3329157696001607 p^{10} T^{8} - 415516942408 p^{15} T^{9} + 81920486 p^{20} T^{10} - 5320 p^{25} T^{11} + p^{30} T^{12} \)
31 \( 1 + 3976 T + 83286866 T^{2} + 428560488920 T^{3} + 3788786084033967 T^{4} + 19749839011446525392 T^{5} + \)\(40\!\cdots\!00\)\( p T^{6} + 19749839011446525392 p^{5} T^{7} + 3788786084033967 p^{10} T^{8} + 428560488920 p^{15} T^{9} + 83286866 p^{20} T^{10} + 3976 p^{25} T^{11} + p^{30} T^{12} \)
37 \( 1 - 22680 T + 503329518 T^{2} - 6259800940888 T^{3} + 78591894954668055 T^{4} - \)\(69\!\cdots\!28\)\( T^{5} + \)\(66\!\cdots\!96\)\( T^{6} - \)\(69\!\cdots\!28\)\( p^{5} T^{7} + 78591894954668055 p^{10} T^{8} - 6259800940888 p^{15} T^{9} + 503329518 p^{20} T^{10} - 22680 p^{25} T^{11} + p^{30} T^{12} \)
41 \( 1 - 28756 T + 750193916 T^{2} - 13026738107732 T^{3} + 211306160121247683 T^{4} - \)\(26\!\cdots\!00\)\( T^{5} + \)\(31\!\cdots\!92\)\( T^{6} - \)\(26\!\cdots\!00\)\( p^{5} T^{7} + 211306160121247683 p^{10} T^{8} - 13026738107732 p^{15} T^{9} + 750193916 p^{20} T^{10} - 28756 p^{25} T^{11} + p^{30} T^{12} \)
43 \( 1 + 6768 T + 494671554 T^{2} + 2742913738512 T^{3} + 119159445546447735 T^{4} + \)\(53\!\cdots\!92\)\( T^{5} + \)\(19\!\cdots\!64\)\( T^{6} + \)\(53\!\cdots\!92\)\( p^{5} T^{7} + 119159445546447735 p^{10} T^{8} + 2742913738512 p^{15} T^{9} + 494671554 p^{20} T^{10} + 6768 p^{25} T^{11} + p^{30} T^{12} \)
47 \( 1 - 51552 T + 2111840514 T^{2} - 61246957962528 T^{3} + 1452388942293427215 T^{4} - \)\(28\!\cdots\!36\)\( T^{5} + \)\(46\!\cdots\!52\)\( T^{6} - \)\(28\!\cdots\!36\)\( p^{5} T^{7} + 1452388942293427215 p^{10} T^{8} - 61246957962528 p^{15} T^{9} + 2111840514 p^{20} T^{10} - 51552 p^{25} T^{11} + p^{30} T^{12} \)
53 \( 1 + 80884 T + 4007879066 T^{2} + 141303056465588 T^{3} + 4187639515951405527 T^{4} + \)\(10\!\cdots\!44\)\( T^{5} + \)\(23\!\cdots\!56\)\( T^{6} + \)\(10\!\cdots\!44\)\( p^{5} T^{7} + 4187639515951405527 p^{10} T^{8} + 141303056465588 p^{15} T^{9} + 4007879066 p^{20} T^{10} + 80884 p^{25} T^{11} + p^{30} T^{12} \)
59 \( 1 - 8872 T + 3182645786 T^{2} - 29070200620696 T^{3} + 4679842080106833143 T^{4} - \)\(40\!\cdots\!84\)\( T^{5} + \)\(41\!\cdots\!88\)\( T^{6} - \)\(40\!\cdots\!84\)\( p^{5} T^{7} + 4679842080106833143 p^{10} T^{8} - 29070200620696 p^{15} T^{9} + 3182645786 p^{20} T^{10} - 8872 p^{25} T^{11} + p^{30} T^{12} \)
61 \( 1 + 50896 T + 4845455240 T^{2} + 185639096405136 T^{3} + 9992630357119665211 T^{4} + \)\(29\!\cdots\!68\)\( T^{5} + \)\(11\!\cdots\!08\)\( T^{6} + \)\(29\!\cdots\!68\)\( p^{5} T^{7} + 9992630357119665211 p^{10} T^{8} + 185639096405136 p^{15} T^{9} + 4845455240 p^{20} T^{10} + 50896 p^{25} T^{11} + p^{30} T^{12} \)
67 \( 1 - 6480 T + 5099780754 T^{2} - 27953333833392 T^{3} + 13041442652014676199 T^{4} - \)\(58\!\cdots\!88\)\( T^{5} + \)\(21\!\cdots\!48\)\( T^{6} - \)\(58\!\cdots\!88\)\( p^{5} T^{7} + 13041442652014676199 p^{10} T^{8} - 27953333833392 p^{15} T^{9} + 5099780754 p^{20} T^{10} - 6480 p^{25} T^{11} + p^{30} T^{12} \)
71 \( 1 - 110852 T + 11683518662 T^{2} - 634743040311404 T^{3} + 35407535175826294175 T^{4} - \)\(12\!\cdots\!64\)\( T^{5} + \)\(60\!\cdots\!80\)\( T^{6} - \)\(12\!\cdots\!64\)\( p^{5} T^{7} + 35407535175826294175 p^{10} T^{8} - 634743040311404 p^{15} T^{9} + 11683518662 p^{20} T^{10} - 110852 p^{25} T^{11} + p^{30} T^{12} \)
73 \( 1 + 64232 T + 7052410688 T^{2} + 368948613770536 T^{3} + 322469435420857371 p T^{4} + \)\(12\!\cdots\!16\)\( T^{5} + \)\(58\!\cdots\!12\)\( T^{6} + \)\(12\!\cdots\!16\)\( p^{5} T^{7} + 322469435420857371 p^{11} T^{8} + 368948613770536 p^{15} T^{9} + 7052410688 p^{20} T^{10} + 64232 p^{25} T^{11} + p^{30} T^{12} \)
79 \( 1 - 111696 T + 16876475322 T^{2} - 1210556899938160 T^{3} + \)\(10\!\cdots\!15\)\( T^{4} - \)\(56\!\cdots\!24\)\( T^{5} + \)\(37\!\cdots\!56\)\( T^{6} - \)\(56\!\cdots\!24\)\( p^{5} T^{7} + \)\(10\!\cdots\!15\)\( p^{10} T^{8} - 1210556899938160 p^{15} T^{9} + 16876475322 p^{20} T^{10} - 111696 p^{25} T^{11} + p^{30} T^{12} \)
83 \( 1 - 101128 T + 21476446850 T^{2} - 1732192887980152 T^{3} + \)\(20\!\cdots\!55\)\( T^{4} - \)\(12\!\cdots\!00\)\( T^{5} + \)\(10\!\cdots\!76\)\( T^{6} - \)\(12\!\cdots\!00\)\( p^{5} T^{7} + \)\(20\!\cdots\!55\)\( p^{10} T^{8} - 1732192887980152 p^{15} T^{9} + 21476446850 p^{20} T^{10} - 101128 p^{25} T^{11} + p^{30} T^{12} \)
89 \( 1 + 35012 T + 15153790364 T^{2} + 1129254702966916 T^{3} + \)\(14\!\cdots\!47\)\( T^{4} + \)\(92\!\cdots\!96\)\( T^{5} + \)\(11\!\cdots\!48\)\( T^{6} + \)\(92\!\cdots\!96\)\( p^{5} T^{7} + \)\(14\!\cdots\!47\)\( p^{10} T^{8} + 1129254702966916 p^{15} T^{9} + 15153790364 p^{20} T^{10} + 35012 p^{25} T^{11} + p^{30} T^{12} \)
97 \( 1 + 70952 T + 38177362064 T^{2} + 2926886015275816 T^{3} + \)\(65\!\cdots\!71\)\( T^{4} + \)\(49\!\cdots\!92\)\( T^{5} + \)\(69\!\cdots\!20\)\( T^{6} + \)\(49\!\cdots\!92\)\( p^{5} T^{7} + \)\(65\!\cdots\!71\)\( p^{10} T^{8} + 2926886015275816 p^{15} T^{9} + 38177362064 p^{20} T^{10} + 70952 p^{25} T^{11} + p^{30} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.29590148362260197864130931573, −4.95709707252150750463409143253, −4.65127408530849182804221646842, −4.58095359784622672866678669762, −4.51691690914004799435291349173, −4.45979630464461278771102329575, −4.29472940437886111166696578136, −3.72479617056443289662205784236, −3.55797264822193827476346445515, −3.46732193142051158906078907578, −3.21023858620297044783819171690, −2.85756223929161597234425088608, −2.77397070917829880696809077148, −2.61942115391078305746146798676, −2.47464217759359565939818430451, −2.22882322806202853246097717117, −1.93277724139956044442823774617, −1.81902456891942517853770169366, −1.79820885245445109862518403943, −1.17657452478092444167549550723, −0.967476634898867691799064602154, −0.75674927991592828633315209246, −0.69620082166172305924290909078, −0.56565565921453311889918699700, −0.13960430164166760584063765954, 0.13960430164166760584063765954, 0.56565565921453311889918699700, 0.69620082166172305924290909078, 0.75674927991592828633315209246, 0.967476634898867691799064602154, 1.17657452478092444167549550723, 1.79820885245445109862518403943, 1.81902456891942517853770169366, 1.93277724139956044442823774617, 2.22882322806202853246097717117, 2.47464217759359565939818430451, 2.61942115391078305746146798676, 2.77397070917829880696809077148, 2.85756223929161597234425088608, 3.21023858620297044783819171690, 3.46732193142051158906078907578, 3.55797264822193827476346445515, 3.72479617056443289662205784236, 4.29472940437886111166696578136, 4.45979630464461278771102329575, 4.51691690914004799435291349173, 4.58095359784622672866678669762, 4.65127408530849182804221646842, 4.95709707252150750463409143253, 5.29590148362260197864130931573

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.