Properties

Label 12-126e6-1.1-c11e6-0-1
Degree $12$
Conductor $4.002\times 10^{12}$
Sign $1$
Analytic cond. $8.23293\times 10^{11}$
Root an. cond. $9.83927$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 96·2-s + 3.07e3·4-s − 1.33e3·5-s − 8.35e4·7-s + 6.55e4·8-s + 1.27e5·10-s + 3.56e5·11-s − 1.95e6·13-s + 8.02e6·14-s − 9.43e6·16-s − 1.73e6·17-s − 5.28e6·19-s − 4.08e6·20-s − 3.42e7·22-s + 5.67e6·23-s + 9.91e7·25-s + 1.87e8·26-s − 2.56e8·28-s − 7.48e6·29-s + 1.45e8·31-s + 3.01e8·32-s + 1.66e8·34-s + 1.11e8·35-s + 2.66e8·37-s + 5.07e8·38-s − 8.72e7·40-s − 9.85e8·41-s + ⋯
L(s)  = 1  − 2.12·2-s + 3/2·4-s − 0.190·5-s − 1.87·7-s + 0.707·8-s + 0.404·10-s + 0.667·11-s − 1.45·13-s + 3.98·14-s − 9/4·16-s − 0.295·17-s − 0.490·19-s − 0.285·20-s − 1.41·22-s + 0.183·23-s + 2.03·25-s + 3.09·26-s − 2.81·28-s − 0.0677·29-s + 0.910·31-s + 1.59·32-s + 0.627·34-s + 0.357·35-s + 0.630·37-s + 1.03·38-s − 0.134·40-s − 1.32·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{12} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(12-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{12} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+11/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 3^{12} \cdot 7^{6}\)
Sign: $1$
Analytic conductor: \(8.23293\times 10^{11}\)
Root analytic conductor: \(9.83927\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 3^{12} \cdot 7^{6} ,\ ( \ : [11/2]^{6} ),\ 1 )\)

Particular Values

\(L(6)\) \(\approx\) \(3.584065306\)
\(L(\frac12)\) \(\approx\) \(3.584065306\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{5} T + p^{10} T^{2} )^{3} \)
3 \( 1 \)
7 \( 1 + 1705 p^{2} T + 85040 p^{5} T^{2} - 98135 p^{10} T^{3} + 85040 p^{16} T^{4} + 1705 p^{24} T^{5} + p^{33} T^{6} \)
good5 \( 1 + 1331 T - 97399154 T^{2} + 27352063513 p T^{3} + 199827246042932 p^{2} T^{4} - 79625073059973149 p^{3} T^{5} - \)\(40\!\cdots\!76\)\( p^{4} T^{6} - 79625073059973149 p^{14} T^{7} + 199827246042932 p^{24} T^{8} + 27352063513 p^{34} T^{9} - 97399154 p^{44} T^{10} + 1331 p^{55} T^{11} + p^{66} T^{12} \)
11 \( 1 - 356381 T + 302945706784 T^{2} - 232553755683207713 T^{3} + \)\(13\!\cdots\!60\)\( T^{4} - \)\(90\!\cdots\!61\)\( T^{5} + \)\(49\!\cdots\!06\)\( T^{6} - \)\(90\!\cdots\!61\)\( p^{11} T^{7} + \)\(13\!\cdots\!60\)\( p^{22} T^{8} - 232553755683207713 p^{33} T^{9} + 302945706784 p^{44} T^{10} - 356381 p^{55} T^{11} + p^{66} T^{12} \)
13 \( ( 1 + 977174 T + 3778834995400 T^{2} + 1997082454585484716 T^{3} + 3778834995400 p^{11} T^{4} + 977174 p^{22} T^{5} + p^{33} T^{6} )^{2} \)
17 \( 1 + 1732024 T - 75735751052963 T^{2} - \)\(15\!\cdots\!32\)\( T^{3} + \)\(32\!\cdots\!18\)\( T^{4} + \)\(23\!\cdots\!08\)\( p T^{5} - \)\(11\!\cdots\!27\)\( T^{6} + \)\(23\!\cdots\!08\)\( p^{12} T^{7} + \)\(32\!\cdots\!18\)\( p^{22} T^{8} - \)\(15\!\cdots\!32\)\( p^{33} T^{9} - 75735751052963 p^{44} T^{10} + 1732024 p^{55} T^{11} + p^{66} T^{12} \)
19 \( 1 + 5289402 T - 318718494990930 T^{2} - \)\(58\!\cdots\!24\)\( T^{3} + \)\(73\!\cdots\!18\)\( T^{4} + \)\(63\!\cdots\!02\)\( T^{5} - \)\(97\!\cdots\!74\)\( T^{6} + \)\(63\!\cdots\!02\)\( p^{11} T^{7} + \)\(73\!\cdots\!18\)\( p^{22} T^{8} - \)\(58\!\cdots\!24\)\( p^{33} T^{9} - 318718494990930 p^{44} T^{10} + 5289402 p^{55} T^{11} + p^{66} T^{12} \)
23 \( 1 - 246904 p T - 446877689003429 T^{2} - \)\(25\!\cdots\!40\)\( T^{3} - \)\(16\!\cdots\!98\)\( T^{4} + \)\(54\!\cdots\!12\)\( T^{5} + \)\(16\!\cdots\!51\)\( T^{6} + \)\(54\!\cdots\!12\)\( p^{11} T^{7} - \)\(16\!\cdots\!98\)\( p^{22} T^{8} - \)\(25\!\cdots\!40\)\( p^{33} T^{9} - 446877689003429 p^{44} T^{10} - 246904 p^{56} T^{11} + p^{66} T^{12} \)
29 \( ( 1 + 3740911 T + 479801432736123 p T^{2} - \)\(18\!\cdots\!62\)\( T^{3} + 479801432736123 p^{12} T^{4} + 3740911 p^{22} T^{5} + p^{33} T^{6} )^{2} \)
31 \( 1 - 145122587 T - 50173077006188295 T^{2} + \)\(28\!\cdots\!90\)\( T^{3} + \)\(23\!\cdots\!39\)\( T^{4} - \)\(39\!\cdots\!47\)\( T^{5} - \)\(65\!\cdots\!62\)\( T^{6} - \)\(39\!\cdots\!47\)\( p^{11} T^{7} + \)\(23\!\cdots\!39\)\( p^{22} T^{8} + \)\(28\!\cdots\!90\)\( p^{33} T^{9} - 50173077006188295 p^{44} T^{10} - 145122587 p^{55} T^{11} + p^{66} T^{12} \)
37 \( 1 - 266146806 T - 481335091338530436 T^{2} + \)\(42\!\cdots\!40\)\( T^{3} + \)\(18\!\cdots\!32\)\( T^{4} - \)\(22\!\cdots\!02\)\( p T^{5} - \)\(36\!\cdots\!86\)\( T^{6} - \)\(22\!\cdots\!02\)\( p^{12} T^{7} + \)\(18\!\cdots\!32\)\( p^{22} T^{8} + \)\(42\!\cdots\!40\)\( p^{33} T^{9} - 481335091338530436 p^{44} T^{10} - 266146806 p^{55} T^{11} + p^{66} T^{12} \)
41 \( ( 1 + 492748620 T + 1569920190915123807 T^{2} + \)\(52\!\cdots\!60\)\( T^{3} + 1569920190915123807 p^{11} T^{4} + 492748620 p^{22} T^{5} + p^{33} T^{6} )^{2} \)
43 \( ( 1 - 856196724 T + 2765765613777350466 T^{2} - \)\(15\!\cdots\!86\)\( T^{3} + 2765765613777350466 p^{11} T^{4} - 856196724 p^{22} T^{5} + p^{33} T^{6} )^{2} \)
47 \( 1 - 1523448978 T - 2839164586319750469 T^{2} + \)\(65\!\cdots\!66\)\( T^{3} + \)\(73\!\cdots\!50\)\( T^{4} + \)\(75\!\cdots\!02\)\( T^{5} - \)\(31\!\cdots\!29\)\( T^{6} + \)\(75\!\cdots\!02\)\( p^{11} T^{7} + \)\(73\!\cdots\!50\)\( p^{22} T^{8} + \)\(65\!\cdots\!66\)\( p^{33} T^{9} - 2839164586319750469 p^{44} T^{10} - 1523448978 p^{55} T^{11} + p^{66} T^{12} \)
53 \( 1 + 5590753641 T - 1628536001919688050 T^{2} - \)\(22\!\cdots\!73\)\( T^{3} + \)\(20\!\cdots\!52\)\( T^{4} + \)\(46\!\cdots\!77\)\( T^{5} - \)\(50\!\cdots\!16\)\( T^{6} + \)\(46\!\cdots\!77\)\( p^{11} T^{7} + \)\(20\!\cdots\!52\)\( p^{22} T^{8} - \)\(22\!\cdots\!73\)\( p^{33} T^{9} - 1628536001919688050 p^{44} T^{10} + 5590753641 p^{55} T^{11} + p^{66} T^{12} \)
59 \( 1 + 2495065619 T - 9506680356468604892 T^{2} + \)\(26\!\cdots\!95\)\( T^{3} + \)\(53\!\cdots\!68\)\( T^{4} - \)\(18\!\cdots\!69\)\( T^{5} + \)\(54\!\cdots\!22\)\( T^{6} - \)\(18\!\cdots\!69\)\( p^{11} T^{7} + \)\(53\!\cdots\!68\)\( p^{22} T^{8} + \)\(26\!\cdots\!95\)\( p^{33} T^{9} - 9506680356468604892 p^{44} T^{10} + 2495065619 p^{55} T^{11} + p^{66} T^{12} \)
61 \( 1 + 5120890846 T - 17867627105650130871 T^{2} + \)\(30\!\cdots\!78\)\( T^{3} + \)\(23\!\cdots\!10\)\( T^{4} - \)\(11\!\cdots\!34\)\( T^{5} + \)\(32\!\cdots\!61\)\( T^{6} - \)\(11\!\cdots\!34\)\( p^{11} T^{7} + \)\(23\!\cdots\!10\)\( p^{22} T^{8} + \)\(30\!\cdots\!78\)\( p^{33} T^{9} - 17867627105650130871 p^{44} T^{10} + 5120890846 p^{55} T^{11} + p^{66} T^{12} \)
67 \( 1 - 16130531092 T - \)\(17\!\cdots\!22\)\( T^{2} + \)\(10\!\cdots\!72\)\( T^{3} + \)\(72\!\cdots\!94\)\( T^{4} - \)\(27\!\cdots\!08\)\( T^{5} - \)\(73\!\cdots\!26\)\( T^{6} - \)\(27\!\cdots\!08\)\( p^{11} T^{7} + \)\(72\!\cdots\!94\)\( p^{22} T^{8} + \)\(10\!\cdots\!72\)\( p^{33} T^{9} - \)\(17\!\cdots\!22\)\( p^{44} T^{10} - 16130531092 p^{55} T^{11} + p^{66} T^{12} \)
71 \( ( 1 - 51069173614 T + \)\(15\!\cdots\!73\)\( T^{2} - \)\(27\!\cdots\!60\)\( T^{3} + \)\(15\!\cdots\!73\)\( p^{11} T^{4} - 51069173614 p^{22} T^{5} + p^{33} T^{6} )^{2} \)
73 \( 1 - 9815735116 T - 57368224540646980600 T^{2} + \)\(17\!\cdots\!48\)\( T^{3} - \)\(11\!\cdots\!28\)\( T^{4} - \)\(14\!\cdots\!12\)\( T^{5} + \)\(13\!\cdots\!54\)\( T^{6} - \)\(14\!\cdots\!12\)\( p^{11} T^{7} - \)\(11\!\cdots\!28\)\( p^{22} T^{8} + \)\(17\!\cdots\!48\)\( p^{33} T^{9} - 57368224540646980600 p^{44} T^{10} - 9815735116 p^{55} T^{11} + p^{66} T^{12} \)
79 \( 1 + 2043182857 T - \)\(43\!\cdots\!27\)\( T^{2} + \)\(52\!\cdots\!34\)\( T^{3} - \)\(82\!\cdots\!21\)\( T^{4} - \)\(11\!\cdots\!95\)\( T^{5} + \)\(13\!\cdots\!66\)\( T^{6} - \)\(11\!\cdots\!95\)\( p^{11} T^{7} - \)\(82\!\cdots\!21\)\( p^{22} T^{8} + \)\(52\!\cdots\!34\)\( p^{33} T^{9} - \)\(43\!\cdots\!27\)\( p^{44} T^{10} + 2043182857 p^{55} T^{11} + p^{66} T^{12} \)
83 \( ( 1 - 72650826067 T + \)\(34\!\cdots\!41\)\( T^{2} - \)\(13\!\cdots\!78\)\( T^{3} + \)\(34\!\cdots\!41\)\( p^{11} T^{4} - 72650826067 p^{22} T^{5} + p^{33} T^{6} )^{2} \)
89 \( 1 + 62019734142 T + \)\(66\!\cdots\!21\)\( T^{2} - \)\(13\!\cdots\!66\)\( T^{3} - \)\(90\!\cdots\!90\)\( T^{4} - \)\(88\!\cdots\!38\)\( T^{5} + \)\(12\!\cdots\!29\)\( T^{6} - \)\(88\!\cdots\!38\)\( p^{11} T^{7} - \)\(90\!\cdots\!90\)\( p^{22} T^{8} - \)\(13\!\cdots\!66\)\( p^{33} T^{9} + \)\(66\!\cdots\!21\)\( p^{44} T^{10} + 62019734142 p^{55} T^{11} + p^{66} T^{12} \)
97 \( ( 1 + 182732589085 T + \)\(24\!\cdots\!91\)\( T^{2} + \)\(21\!\cdots\!42\)\( T^{3} + \)\(24\!\cdots\!91\)\( p^{11} T^{4} + 182732589085 p^{22} T^{5} + p^{33} T^{6} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.19473005044561178106288050044, −5.19461320495874066152784834506, −4.97951345053152997030459876199, −4.93521730831081783994929756872, −4.28738224340966732317438199548, −4.26224988496265714754689541079, −4.07068212043657723763081997531, −3.95483430408905952125746674443, −3.62120509926440440587711571325, −3.47013530328623990141453628633, −3.07297724618886046517420962569, −2.98379149565813523980374528683, −2.67304991053359531696321580068, −2.51186586645026125203909081130, −2.44434815032180263947847977348, −2.06214598531968854435161138334, −1.83561716573347024481209954554, −1.64847518171571536087919641786, −1.31478490369659245847932833912, −1.12028841487385658333271173606, −0.69516237296576049730407714772, −0.57702757548388586049471552303, −0.50908587893287797601056544384, −0.49381450396452801618437969878, −0.36521817238513712435174446930, 0.36521817238513712435174446930, 0.49381450396452801618437969878, 0.50908587893287797601056544384, 0.57702757548388586049471552303, 0.69516237296576049730407714772, 1.12028841487385658333271173606, 1.31478490369659245847932833912, 1.64847518171571536087919641786, 1.83561716573347024481209954554, 2.06214598531968854435161138334, 2.44434815032180263947847977348, 2.51186586645026125203909081130, 2.67304991053359531696321580068, 2.98379149565813523980374528683, 3.07297724618886046517420962569, 3.47013530328623990141453628633, 3.62120509926440440587711571325, 3.95483430408905952125746674443, 4.07068212043657723763081997531, 4.26224988496265714754689541079, 4.28738224340966732317438199548, 4.93521730831081783994929756872, 4.97951345053152997030459876199, 5.19461320495874066152784834506, 5.19473005044561178106288050044

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.