Properties

Label 10-920e5-1.1-c1e5-0-0
Degree $10$
Conductor $6.591\times 10^{14}$
Sign $1$
Analytic cond. $21395.6$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s − 2·7-s − 9-s − 11-s + 4·13-s + 4·17-s + 7·19-s − 5·23-s + 15·25-s + 27-s + 4·29-s + 19·31-s + 10·35-s + 15·37-s + 25·41-s + 5·45-s − 11·47-s − 3·49-s + 3·53-s + 5·55-s − 59-s − 5·61-s + 2·63-s − 20·65-s + 9·67-s + 71-s − 73-s + ⋯
L(s)  = 1  − 2.23·5-s − 0.755·7-s − 1/3·9-s − 0.301·11-s + 1.10·13-s + 0.970·17-s + 1.60·19-s − 1.04·23-s + 3·25-s + 0.192·27-s + 0.742·29-s + 3.41·31-s + 1.69·35-s + 2.46·37-s + 3.90·41-s + 0.745·45-s − 1.60·47-s − 3/7·49-s + 0.412·53-s + 0.674·55-s − 0.130·59-s − 0.640·61-s + 0.251·63-s − 2.48·65-s + 1.09·67-s + 0.118·71-s − 0.117·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{15} \cdot 5^{5} \cdot 23^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{15} \cdot 5^{5} \cdot 23^{5}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(2^{15} \cdot 5^{5} \cdot 23^{5}\)
Sign: $1$
Analytic conductor: \(21395.6\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 2^{15} \cdot 5^{5} \cdot 23^{5} ,\ ( \ : 1/2, 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.409176356\)
\(L(\frac12)\) \(\approx\) \(2.409176356\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{5} \)
23$C_1$ \( ( 1 + T )^{5} \)
good3$C_2 \wr S_5$ \( 1 + T^{2} - T^{3} - 4 T^{4} + 10 T^{5} - 4 p T^{6} - p^{2} T^{7} + p^{3} T^{8} + p^{5} T^{10} \)
7$C_2 \wr S_5$ \( 1 + 2 T + p T^{2} - T^{3} + 30 T^{4} + 46 T^{5} + 30 p T^{6} - p^{2} T^{7} + p^{4} T^{8} + 2 p^{4} T^{9} + p^{5} T^{10} \)
11$C_2 \wr S_5$ \( 1 + T + 20 T^{2} + 16 T^{3} + 227 T^{4} + 174 T^{5} + 227 p T^{6} + 16 p^{2} T^{7} + 20 p^{3} T^{8} + p^{4} T^{9} + p^{5} T^{10} \)
13$C_2 \wr S_5$ \( 1 - 4 T + 19 T^{2} - 133 T^{3} + 496 T^{4} - 1606 T^{5} + 496 p T^{6} - 133 p^{2} T^{7} + 19 p^{3} T^{8} - 4 p^{4} T^{9} + p^{5} T^{10} \)
17$C_2 \wr S_5$ \( 1 - 4 T + 39 T^{2} - 115 T^{3} + 406 T^{4} - 1566 T^{5} + 406 p T^{6} - 115 p^{2} T^{7} + 39 p^{3} T^{8} - 4 p^{4} T^{9} + p^{5} T^{10} \)
19$C_2 \wr S_5$ \( 1 - 7 T + 54 T^{2} - 352 T^{3} + 1949 T^{4} - 7810 T^{5} + 1949 p T^{6} - 352 p^{2} T^{7} + 54 p^{3} T^{8} - 7 p^{4} T^{9} + p^{5} T^{10} \)
29$C_2 \wr S_5$ \( 1 - 4 T + 104 T^{2} - 500 T^{3} + 4907 T^{4} - 22264 T^{5} + 4907 p T^{6} - 500 p^{2} T^{7} + 104 p^{3} T^{8} - 4 p^{4} T^{9} + p^{5} T^{10} \)
31$C_2 \wr S_5$ \( 1 - 19 T + 227 T^{2} - 2173 T^{3} + 16253 T^{4} - 98336 T^{5} + 16253 p T^{6} - 2173 p^{2} T^{7} + 227 p^{3} T^{8} - 19 p^{4} T^{9} + p^{5} T^{10} \)
37$C_2 \wr S_5$ \( 1 - 15 T + 249 T^{2} - 2256 T^{3} + 20618 T^{4} - 125810 T^{5} + 20618 p T^{6} - 2256 p^{2} T^{7} + 249 p^{3} T^{8} - 15 p^{4} T^{9} + p^{5} T^{10} \)
41$C_2 \wr S_5$ \( 1 - 25 T + 417 T^{2} - 4753 T^{3} + 42913 T^{4} - 303514 T^{5} + 42913 p T^{6} - 4753 p^{2} T^{7} + 417 p^{3} T^{8} - 25 p^{4} T^{9} + p^{5} T^{10} \)
43$C_2$ \( ( 1 + p T^{2} )^{5} \)
47$C_2 \wr S_5$ \( 1 + 11 T + 125 T^{2} + 952 T^{3} + 5780 T^{4} + 41402 T^{5} + 5780 p T^{6} + 952 p^{2} T^{7} + 125 p^{3} T^{8} + 11 p^{4} T^{9} + p^{5} T^{10} \)
53$C_2 \wr S_5$ \( 1 - 3 T + 105 T^{2} - 196 T^{3} + 8458 T^{4} - 24194 T^{5} + 8458 p T^{6} - 196 p^{2} T^{7} + 105 p^{3} T^{8} - 3 p^{4} T^{9} + p^{5} T^{10} \)
59$C_2 \wr S_5$ \( 1 + T + 153 T^{2} + 14236 T^{4} + 6606 T^{5} + 14236 p T^{6} + 153 p^{3} T^{8} + p^{4} T^{9} + p^{5} T^{10} \)
61$C_2 \wr S_5$ \( 1 + 5 T + 190 T^{2} + 652 T^{3} + 18257 T^{4} + 49998 T^{5} + 18257 p T^{6} + 652 p^{2} T^{7} + 190 p^{3} T^{8} + 5 p^{4} T^{9} + p^{5} T^{10} \)
67$C_2 \wr S_5$ \( 1 - 9 T + 209 T^{2} - 1980 T^{3} + 24396 T^{4} - 176326 T^{5} + 24396 p T^{6} - 1980 p^{2} T^{7} + 209 p^{3} T^{8} - 9 p^{4} T^{9} + p^{5} T^{10} \)
71$C_2 \wr S_5$ \( 1 - T + 141 T^{2} + 123 T^{3} + 12967 T^{4} + 23580 T^{5} + 12967 p T^{6} + 123 p^{2} T^{7} + 141 p^{3} T^{8} - p^{4} T^{9} + p^{5} T^{10} \)
73$C_2 \wr S_5$ \( 1 + T + 207 T^{2} + 20 T^{3} + 20760 T^{4} - 9066 T^{5} + 20760 p T^{6} + 20 p^{2} T^{7} + 207 p^{3} T^{8} + p^{4} T^{9} + p^{5} T^{10} \)
79$C_2 \wr S_5$ \( 1 + 2 T + 267 T^{2} + 760 T^{3} + 34506 T^{4} + 94092 T^{5} + 34506 p T^{6} + 760 p^{2} T^{7} + 267 p^{3} T^{8} + 2 p^{4} T^{9} + p^{5} T^{10} \)
83$C_2 \wr S_5$ \( 1 + 45 T + 1199 T^{2} + 21528 T^{3} + 290714 T^{4} + 2994854 T^{5} + 290714 p T^{6} + 21528 p^{2} T^{7} + 1199 p^{3} T^{8} + 45 p^{4} T^{9} + p^{5} T^{10} \)
89$C_2 \wr S_5$ \( 1 - 6 T + 309 T^{2} - 1624 T^{3} + 45458 T^{4} - 202212 T^{5} + 45458 p T^{6} - 1624 p^{2} T^{7} + 309 p^{3} T^{8} - 6 p^{4} T^{9} + p^{5} T^{10} \)
97$C_2 \wr S_5$ \( 1 - 25 T + 446 T^{2} - 5536 T^{3} + 65833 T^{4} - 653150 T^{5} + 65833 p T^{6} - 5536 p^{2} T^{7} + 446 p^{3} T^{8} - 25 p^{4} T^{9} + p^{5} T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.95322277109494328558338176585, −5.84438893151810673248538426668, −5.78435942644454397470998341229, −5.71377712578460314387666017935, −5.64466548736045458414807965690, −4.87667813490802120246453902636, −4.85908066039913024524844651517, −4.75616832661905704282225457331, −4.55937800745570569845600153185, −4.32983811528020909020172018173, −4.18747621777777804525866432690, −3.95100545106586931437065464553, −3.66598182583261094374758980292, −3.61468483386655638528982792785, −3.29091365915199499416758983718, −3.07269763056208165100716382094, −2.85040023823048831759740890976, −2.66194863283604897180992559218, −2.48189551919500866987083061786, −2.46885070526343660016953435920, −1.43596666248003605840752136528, −1.36657923318264915751844559622, −1.07702969525552984457780324255, −0.67265184045756509530387203496, −0.46866625083670960814790667256, 0.46866625083670960814790667256, 0.67265184045756509530387203496, 1.07702969525552984457780324255, 1.36657923318264915751844559622, 1.43596666248003605840752136528, 2.46885070526343660016953435920, 2.48189551919500866987083061786, 2.66194863283604897180992559218, 2.85040023823048831759740890976, 3.07269763056208165100716382094, 3.29091365915199499416758983718, 3.61468483386655638528982792785, 3.66598182583261094374758980292, 3.95100545106586931437065464553, 4.18747621777777804525866432690, 4.32983811528020909020172018173, 4.55937800745570569845600153185, 4.75616832661905704282225457331, 4.85908066039913024524844651517, 4.87667813490802120246453902636, 5.64466548736045458414807965690, 5.71377712578460314387666017935, 5.78435942644454397470998341229, 5.84438893151810673248538426668, 5.95322277109494328558338176585

Graph of the $Z$-function along the critical line