Properties

Label 10-4600e5-1.1-c1e5-0-0
Degree $10$
Conductor $2.060\times 10^{18}$
Sign $1$
Analytic cond. $6.68612\times 10^{7}$
Root an. cond. $6.06062$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 9-s − 11-s − 4·13-s − 4·17-s + 7·19-s + 5·23-s − 27-s + 4·29-s + 19·31-s − 15·37-s + 25·41-s + 11·47-s − 3·49-s − 3·53-s − 59-s − 5·61-s − 2·63-s − 9·67-s + 71-s + 73-s − 2·77-s − 2·79-s + 5·81-s + 45·83-s + 6·89-s − 8·91-s + ⋯
L(s)  = 1  + 0.755·7-s − 1/3·9-s − 0.301·11-s − 1.10·13-s − 0.970·17-s + 1.60·19-s + 1.04·23-s − 0.192·27-s + 0.742·29-s + 3.41·31-s − 2.46·37-s + 3.90·41-s + 1.60·47-s − 3/7·49-s − 0.412·53-s − 0.130·59-s − 0.640·61-s − 0.251·63-s − 1.09·67-s + 0.118·71-s + 0.117·73-s − 0.227·77-s − 0.225·79-s + 5/9·81-s + 4.93·83-s + 0.635·89-s − 0.838·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{15} \cdot 5^{10} \cdot 23^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{15} \cdot 5^{10} \cdot 23^{5}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(2^{15} \cdot 5^{10} \cdot 23^{5}\)
Sign: $1$
Analytic conductor: \(6.68612\times 10^{7}\)
Root analytic conductor: \(6.06062\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{4600} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 2^{15} \cdot 5^{10} \cdot 23^{5} ,\ ( \ : 1/2, 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(11.03274414\)
\(L(\frac12)\) \(\approx\) \(11.03274414\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23$C_1$ \( ( 1 - T )^{5} \)
good3$C_2 \wr S_5$ \( 1 + T^{2} + T^{3} - 4 T^{4} - 10 T^{5} - 4 p T^{6} + p^{2} T^{7} + p^{3} T^{8} + p^{5} T^{10} \)
7$C_2 \wr S_5$ \( 1 - 2 T + p T^{2} + T^{3} + 30 T^{4} - 46 T^{5} + 30 p T^{6} + p^{2} T^{7} + p^{4} T^{8} - 2 p^{4} T^{9} + p^{5} T^{10} \)
11$C_2 \wr S_5$ \( 1 + T + 20 T^{2} + 16 T^{3} + 227 T^{4} + 174 T^{5} + 227 p T^{6} + 16 p^{2} T^{7} + 20 p^{3} T^{8} + p^{4} T^{9} + p^{5} T^{10} \)
13$C_2 \wr S_5$ \( 1 + 4 T + 19 T^{2} + 133 T^{3} + 496 T^{4} + 1606 T^{5} + 496 p T^{6} + 133 p^{2} T^{7} + 19 p^{3} T^{8} + 4 p^{4} T^{9} + p^{5} T^{10} \)
17$C_2 \wr S_5$ \( 1 + 4 T + 39 T^{2} + 115 T^{3} + 406 T^{4} + 1566 T^{5} + 406 p T^{6} + 115 p^{2} T^{7} + 39 p^{3} T^{8} + 4 p^{4} T^{9} + p^{5} T^{10} \)
19$C_2 \wr S_5$ \( 1 - 7 T + 54 T^{2} - 352 T^{3} + 1949 T^{4} - 7810 T^{5} + 1949 p T^{6} - 352 p^{2} T^{7} + 54 p^{3} T^{8} - 7 p^{4} T^{9} + p^{5} T^{10} \)
29$C_2 \wr S_5$ \( 1 - 4 T + 104 T^{2} - 500 T^{3} + 4907 T^{4} - 22264 T^{5} + 4907 p T^{6} - 500 p^{2} T^{7} + 104 p^{3} T^{8} - 4 p^{4} T^{9} + p^{5} T^{10} \)
31$C_2 \wr S_5$ \( 1 - 19 T + 227 T^{2} - 2173 T^{3} + 16253 T^{4} - 98336 T^{5} + 16253 p T^{6} - 2173 p^{2} T^{7} + 227 p^{3} T^{8} - 19 p^{4} T^{9} + p^{5} T^{10} \)
37$C_2 \wr S_5$ \( 1 + 15 T + 249 T^{2} + 2256 T^{3} + 20618 T^{4} + 125810 T^{5} + 20618 p T^{6} + 2256 p^{2} T^{7} + 249 p^{3} T^{8} + 15 p^{4} T^{9} + p^{5} T^{10} \)
41$C_2 \wr S_5$ \( 1 - 25 T + 417 T^{2} - 4753 T^{3} + 42913 T^{4} - 303514 T^{5} + 42913 p T^{6} - 4753 p^{2} T^{7} + 417 p^{3} T^{8} - 25 p^{4} T^{9} + p^{5} T^{10} \)
43$C_2$ \( ( 1 + p T^{2} )^{5} \)
47$C_2 \wr S_5$ \( 1 - 11 T + 125 T^{2} - 952 T^{3} + 5780 T^{4} - 41402 T^{5} + 5780 p T^{6} - 952 p^{2} T^{7} + 125 p^{3} T^{8} - 11 p^{4} T^{9} + p^{5} T^{10} \)
53$C_2 \wr S_5$ \( 1 + 3 T + 105 T^{2} + 196 T^{3} + 8458 T^{4} + 24194 T^{5} + 8458 p T^{6} + 196 p^{2} T^{7} + 105 p^{3} T^{8} + 3 p^{4} T^{9} + p^{5} T^{10} \)
59$C_2 \wr S_5$ \( 1 + T + 153 T^{2} + 14236 T^{4} + 6606 T^{5} + 14236 p T^{6} + 153 p^{3} T^{8} + p^{4} T^{9} + p^{5} T^{10} \)
61$C_2 \wr S_5$ \( 1 + 5 T + 190 T^{2} + 652 T^{3} + 18257 T^{4} + 49998 T^{5} + 18257 p T^{6} + 652 p^{2} T^{7} + 190 p^{3} T^{8} + 5 p^{4} T^{9} + p^{5} T^{10} \)
67$C_2 \wr S_5$ \( 1 + 9 T + 209 T^{2} + 1980 T^{3} + 24396 T^{4} + 176326 T^{5} + 24396 p T^{6} + 1980 p^{2} T^{7} + 209 p^{3} T^{8} + 9 p^{4} T^{9} + p^{5} T^{10} \)
71$C_2 \wr S_5$ \( 1 - T + 141 T^{2} + 123 T^{3} + 12967 T^{4} + 23580 T^{5} + 12967 p T^{6} + 123 p^{2} T^{7} + 141 p^{3} T^{8} - p^{4} T^{9} + p^{5} T^{10} \)
73$C_2 \wr S_5$ \( 1 - T + 207 T^{2} - 20 T^{3} + 20760 T^{4} + 9066 T^{5} + 20760 p T^{6} - 20 p^{2} T^{7} + 207 p^{3} T^{8} - p^{4} T^{9} + p^{5} T^{10} \)
79$C_2 \wr S_5$ \( 1 + 2 T + 267 T^{2} + 760 T^{3} + 34506 T^{4} + 94092 T^{5} + 34506 p T^{6} + 760 p^{2} T^{7} + 267 p^{3} T^{8} + 2 p^{4} T^{9} + p^{5} T^{10} \)
83$C_2 \wr S_5$ \( 1 - 45 T + 1199 T^{2} - 21528 T^{3} + 290714 T^{4} - 2994854 T^{5} + 290714 p T^{6} - 21528 p^{2} T^{7} + 1199 p^{3} T^{8} - 45 p^{4} T^{9} + p^{5} T^{10} \)
89$C_2 \wr S_5$ \( 1 - 6 T + 309 T^{2} - 1624 T^{3} + 45458 T^{4} - 202212 T^{5} + 45458 p T^{6} - 1624 p^{2} T^{7} + 309 p^{3} T^{8} - 6 p^{4} T^{9} + p^{5} T^{10} \)
97$C_2 \wr S_5$ \( 1 + 25 T + 446 T^{2} + 5536 T^{3} + 65833 T^{4} + 653150 T^{5} + 65833 p T^{6} + 5536 p^{2} T^{7} + 446 p^{3} T^{8} + 25 p^{4} T^{9} + p^{5} T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.88867949014580661560886250531, −4.70517489380505409925086377265, −4.56469672425074860556605542155, −4.51377277356136107735259255591, −4.37834930798805495721127582743, −4.26058248300030371067004293913, −3.99397576816332196248817887521, −3.67554757115524909444087969057, −3.58951556727339372883228658028, −3.48787491713065917975124773687, −3.20851663257652005747291937066, −2.90444314444126982771166507205, −2.80347553586228778928283928185, −2.75737139730763787273918467623, −2.66963200213783021413756575125, −2.34115449272023204913543600705, −2.15256287826063255202293680614, −2.06337192434157581354514318374, −1.64350337481046940627463208629, −1.58779039870031991803616941657, −1.19456314813965826176025391869, −1.02533164956805793092658336976, −0.69815899108497621608380730170, −0.54620495600278261556248022128, −0.44418298166933433504974895875, 0.44418298166933433504974895875, 0.54620495600278261556248022128, 0.69815899108497621608380730170, 1.02533164956805793092658336976, 1.19456314813965826176025391869, 1.58779039870031991803616941657, 1.64350337481046940627463208629, 2.06337192434157581354514318374, 2.15256287826063255202293680614, 2.34115449272023204913543600705, 2.66963200213783021413756575125, 2.75737139730763787273918467623, 2.80347553586228778928283928185, 2.90444314444126982771166507205, 3.20851663257652005747291937066, 3.48787491713065917975124773687, 3.58951556727339372883228658028, 3.67554757115524909444087969057, 3.99397576816332196248817887521, 4.26058248300030371067004293913, 4.37834930798805495721127582743, 4.51377277356136107735259255591, 4.56469672425074860556605542155, 4.70517489380505409925086377265, 4.88867949014580661560886250531

Graph of the $Z$-function along the critical line