Properties

Label 10-315e5-1.1-c9e5-0-0
Degree $10$
Conductor $3.101\times 10^{12}$
Sign $1$
Analytic cond. $1.12393\times 10^{11}$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 862·4-s + 3.12e3·5-s + 1.20e4·7-s + 6.78e3·8-s − 6.25e3·10-s − 1.03e4·11-s + 1.58e5·13-s − 2.40e4·14-s + 1.23e5·16-s − 3.16e4·17-s + 1.65e6·19-s − 2.69e6·20-s + 2.06e4·22-s − 7.96e5·23-s + 5.85e6·25-s − 3.17e5·26-s − 1.03e7·28-s + 3.35e6·29-s + 2.67e6·31-s − 6.04e6·32-s + 6.32e4·34-s + 3.75e7·35-s + 5.09e7·37-s − 3.31e6·38-s + 2.11e7·40-s − 6.33e6·41-s + ⋯
L(s)  = 1  − 0.0883·2-s − 1.68·4-s + 2.23·5-s + 1.88·7-s + 0.585·8-s − 0.197·10-s − 0.212·11-s + 1.54·13-s − 0.167·14-s + 0.470·16-s − 0.0918·17-s + 2.91·19-s − 3.76·20-s + 0.0187·22-s − 0.593·23-s + 3·25-s − 0.136·26-s − 3.18·28-s + 0.880·29-s + 0.520·31-s − 1.01·32-s + 0.00811·34-s + 4.22·35-s + 4.47·37-s − 0.257·38-s + 1.30·40-s − 0.349·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 5^{5} \cdot 7^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 5^{5} \cdot 7^{5}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(3^{10} \cdot 5^{5} \cdot 7^{5}\)
Sign: $1$
Analytic conductor: \(1.12393\times 10^{11}\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 3^{10} \cdot 5^{5} \cdot 7^{5} ,\ ( \ : 9/2, 9/2, 9/2, 9/2, 9/2 ),\ 1 )\)

Particular Values

\(L(5)\) \(\approx\) \(75.53948046\)
\(L(\frac12)\) \(\approx\) \(75.53948046\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 - p^{4} T )^{5} \)
7$C_1$ \( ( 1 - p^{4} T )^{5} \)
good2$C_2 \wr S_5$ \( 1 + p T + 433 p T^{2} - 831 p^{2} T^{3} + 18845 p^{5} T^{4} - 27043 p^{6} T^{5} + 18845 p^{14} T^{6} - 831 p^{20} T^{7} + 433 p^{28} T^{8} + p^{37} T^{9} + p^{45} T^{10} \)
11$C_2 \wr S_5$ \( 1 + 10312 T + 6110501469 T^{2} - 12868286470036 T^{3} + 18721446338695361377 T^{4} - \)\(14\!\cdots\!88\)\( T^{5} + 18721446338695361377 p^{9} T^{6} - 12868286470036 p^{18} T^{7} + 6110501469 p^{27} T^{8} + 10312 p^{36} T^{9} + p^{45} T^{10} \)
13$C_2 \wr S_5$ \( 1 - 158638 T + 40099411663 T^{2} - 4525202776113992 T^{3} + \)\(74\!\cdots\!09\)\( T^{4} - \)\(64\!\cdots\!38\)\( T^{5} + \)\(74\!\cdots\!09\)\( p^{9} T^{6} - 4525202776113992 p^{18} T^{7} + 40099411663 p^{27} T^{8} - 158638 p^{36} T^{9} + p^{45} T^{10} \)
17$C_2 \wr S_5$ \( 1 + 31614 T + 152979949219 T^{2} + 15467440208130592 T^{3} + \)\(26\!\cdots\!33\)\( T^{4} + \)\(20\!\cdots\!30\)\( T^{5} + \)\(26\!\cdots\!33\)\( p^{9} T^{6} + 15467440208130592 p^{18} T^{7} + 152979949219 p^{27} T^{8} + 31614 p^{36} T^{9} + p^{45} T^{10} \)
19$C_2 \wr S_5$ \( 1 - 1655376 T + 1555849159655 T^{2} - 44845180156018720 p T^{3} + \)\(28\!\cdots\!70\)\( T^{4} - \)\(95\!\cdots\!08\)\( T^{5} + \)\(28\!\cdots\!70\)\( p^{9} T^{6} - 44845180156018720 p^{19} T^{7} + 1555849159655 p^{27} T^{8} - 1655376 p^{36} T^{9} + p^{45} T^{10} \)
23$C_2 \wr S_5$ \( 1 + 796104 T + 3980003153371 T^{2} + 4279841785977132736 T^{3} + \)\(51\!\cdots\!98\)\( p T^{4} + \)\(93\!\cdots\!40\)\( T^{5} + \)\(51\!\cdots\!98\)\( p^{10} T^{6} + 4279841785977132736 p^{18} T^{7} + 3980003153371 p^{27} T^{8} + 796104 p^{36} T^{9} + p^{45} T^{10} \)
29$C_2 \wr S_5$ \( 1 - 3353726 T + 28116887828895 T^{2} - \)\(11\!\cdots\!00\)\( T^{3} + \)\(68\!\cdots\!45\)\( T^{4} - \)\(18\!\cdots\!78\)\( T^{5} + \)\(68\!\cdots\!45\)\( p^{9} T^{6} - \)\(11\!\cdots\!00\)\( p^{18} T^{7} + 28116887828895 p^{27} T^{8} - 3353726 p^{36} T^{9} + p^{45} T^{10} \)
31$C_2 \wr S_5$ \( 1 - 2678120 T + 30980429107403 T^{2} - \)\(17\!\cdots\!84\)\( T^{3} + \)\(13\!\cdots\!94\)\( T^{4} - \)\(47\!\cdots\!88\)\( T^{5} + \)\(13\!\cdots\!94\)\( p^{9} T^{6} - \)\(17\!\cdots\!84\)\( p^{18} T^{7} + 30980429107403 p^{27} T^{8} - 2678120 p^{36} T^{9} + p^{45} T^{10} \)
37$C_2 \wr S_5$ \( 1 - 50994846 T + 39149870417693 p T^{2} - \)\(27\!\cdots\!92\)\( T^{3} + \)\(40\!\cdots\!66\)\( T^{4} - \)\(49\!\cdots\!08\)\( T^{5} + \)\(40\!\cdots\!66\)\( p^{9} T^{6} - \)\(27\!\cdots\!92\)\( p^{18} T^{7} + 39149870417693 p^{28} T^{8} - 50994846 p^{36} T^{9} + p^{45} T^{10} \)
41$C_2 \wr S_5$ \( 1 + 6330194 T + 1562261358649949 T^{2} + \)\(78\!\cdots\!48\)\( T^{3} + \)\(99\!\cdots\!30\)\( T^{4} + \)\(38\!\cdots\!76\)\( T^{5} + \)\(99\!\cdots\!30\)\( p^{9} T^{6} + \)\(78\!\cdots\!48\)\( p^{18} T^{7} + 1562261358649949 p^{27} T^{8} + 6330194 p^{36} T^{9} + p^{45} T^{10} \)
43$C_2 \wr S_5$ \( 1 - 6149468 T + 2230226649262079 T^{2} - \)\(11\!\cdots\!80\)\( T^{3} + \)\(21\!\cdots\!34\)\( T^{4} - \)\(88\!\cdots\!36\)\( T^{5} + \)\(21\!\cdots\!34\)\( p^{9} T^{6} - \)\(11\!\cdots\!80\)\( p^{18} T^{7} + 2230226649262079 p^{27} T^{8} - 6149468 p^{36} T^{9} + p^{45} T^{10} \)
47$C_2 \wr S_5$ \( 1 - 6897780 T + 2892726247790561 T^{2} + \)\(13\!\cdots\!96\)\( T^{3} + \)\(42\!\cdots\!25\)\( T^{4} + \)\(40\!\cdots\!32\)\( T^{5} + \)\(42\!\cdots\!25\)\( p^{9} T^{6} + \)\(13\!\cdots\!96\)\( p^{18} T^{7} + 2892726247790561 p^{27} T^{8} - 6897780 p^{36} T^{9} + p^{45} T^{10} \)
53$C_2 \wr S_5$ \( 1 - 70886738 T + 8460080414958121 T^{2} + \)\(37\!\cdots\!40\)\( T^{3} - \)\(39\!\cdots\!94\)\( T^{4} + \)\(21\!\cdots\!32\)\( T^{5} - \)\(39\!\cdots\!94\)\( p^{9} T^{6} + \)\(37\!\cdots\!40\)\( p^{18} T^{7} + 8460080414958121 p^{27} T^{8} - 70886738 p^{36} T^{9} + p^{45} T^{10} \)
59$C_2 \wr S_5$ \( 1 - 2581952 p T + 34448863513048391 T^{2} - \)\(43\!\cdots\!68\)\( T^{3} + \)\(52\!\cdots\!42\)\( T^{4} - \)\(51\!\cdots\!48\)\( T^{5} + \)\(52\!\cdots\!42\)\( p^{9} T^{6} - \)\(43\!\cdots\!68\)\( p^{18} T^{7} + 34448863513048391 p^{27} T^{8} - 2581952 p^{37} T^{9} + p^{45} T^{10} \)
61$C_2 \wr S_5$ \( 1 - 257015698 T + 23075149340036769 T^{2} - \)\(27\!\cdots\!72\)\( T^{3} - \)\(13\!\cdots\!50\)\( T^{4} + \)\(20\!\cdots\!60\)\( T^{5} - \)\(13\!\cdots\!50\)\( p^{9} T^{6} - \)\(27\!\cdots\!72\)\( p^{18} T^{7} + 23075149340036769 p^{27} T^{8} - 257015698 p^{36} T^{9} + p^{45} T^{10} \)
67$C_2 \wr S_5$ \( 1 - 133467828 T + 56930250312806863 T^{2} + \)\(14\!\cdots\!40\)\( T^{3} + \)\(54\!\cdots\!62\)\( T^{4} + \)\(24\!\cdots\!00\)\( T^{5} + \)\(54\!\cdots\!62\)\( p^{9} T^{6} + \)\(14\!\cdots\!40\)\( p^{18} T^{7} + 56930250312806863 p^{27} T^{8} - 133467828 p^{36} T^{9} + p^{45} T^{10} \)
71$C_2 \wr S_5$ \( 1 + 522788960 T + 303569112441738147 T^{2} + \)\(93\!\cdots\!00\)\( T^{3} + \)\(30\!\cdots\!82\)\( T^{4} + \)\(63\!\cdots\!80\)\( T^{5} + \)\(30\!\cdots\!82\)\( p^{9} T^{6} + \)\(93\!\cdots\!00\)\( p^{18} T^{7} + 303569112441738147 p^{27} T^{8} + 522788960 p^{36} T^{9} + p^{45} T^{10} \)
73$C_2 \wr S_5$ \( 1 - 159370858 T + 184580562002358805 T^{2} - \)\(29\!\cdots\!44\)\( T^{3} + \)\(17\!\cdots\!22\)\( T^{4} - \)\(23\!\cdots\!16\)\( T^{5} + \)\(17\!\cdots\!22\)\( p^{9} T^{6} - \)\(29\!\cdots\!44\)\( p^{18} T^{7} + 184580562002358805 p^{27} T^{8} - 159370858 p^{36} T^{9} + p^{45} T^{10} \)
79$C_2 \wr S_5$ \( 1 - 464174900 T + 596055521003027425 T^{2} - \)\(19\!\cdots\!64\)\( T^{3} + \)\(13\!\cdots\!85\)\( T^{4} - \)\(33\!\cdots\!32\)\( T^{5} + \)\(13\!\cdots\!85\)\( p^{9} T^{6} - \)\(19\!\cdots\!64\)\( p^{18} T^{7} + 596055521003027425 p^{27} T^{8} - 464174900 p^{36} T^{9} + p^{45} T^{10} \)
83$C_2 \wr S_5$ \( 1 + 2207636832 T + 2812258639953749663 T^{2} + \)\(24\!\cdots\!80\)\( T^{3} + \)\(15\!\cdots\!98\)\( T^{4} + \)\(76\!\cdots\!76\)\( T^{5} + \)\(15\!\cdots\!98\)\( p^{9} T^{6} + \)\(24\!\cdots\!80\)\( p^{18} T^{7} + 2812258639953749663 p^{27} T^{8} + 2207636832 p^{36} T^{9} + p^{45} T^{10} \)
89$C_2 \wr S_5$ \( 1 - 1106708326 T + 1689084835940499725 T^{2} - \)\(13\!\cdots\!80\)\( T^{3} + \)\(11\!\cdots\!90\)\( T^{4} - \)\(68\!\cdots\!28\)\( T^{5} + \)\(11\!\cdots\!90\)\( p^{9} T^{6} - \)\(13\!\cdots\!80\)\( p^{18} T^{7} + 1689084835940499725 p^{27} T^{8} - 1106708326 p^{36} T^{9} + p^{45} T^{10} \)
97$C_2 \wr S_5$ \( 1 - 1956142254 T + 4082161263087973027 T^{2} - \)\(52\!\cdots\!20\)\( T^{3} + \)\(63\!\cdots\!73\)\( T^{4} - \)\(57\!\cdots\!62\)\( T^{5} + \)\(63\!\cdots\!73\)\( p^{9} T^{6} - \)\(52\!\cdots\!20\)\( p^{18} T^{7} + 4082161263087973027 p^{27} T^{8} - 1956142254 p^{36} T^{9} + p^{45} T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.41383426369081855983460714443, −5.32428738747807592715270538774, −5.18568863678018082211440493726, −5.16121767966419257553177566298, −5.05241587647620470837437701755, −4.38930595338330187375075741352, −4.25567832939604624265446161751, −4.18771062113447505601598990517, −4.14716068245433914139797409119, −4.09174836166329894029723432041, −3.33970869044726039218822183672, −3.09292665285183073700157081443, −3.06990573541549945708675248060, −2.72871894271178897455531388988, −2.49946131448995770865052251661, −2.15971062799013188676711471893, −2.13816663465035840005448159418, −1.61870746603028050587192357780, −1.56814324479734969900044241340, −1.43211930527215041113664991390, −1.06237923557917822673925662931, −0.73894454603894110129504733716, −0.63894109696943917112414608145, −0.62783666133123237192773690870, −0.58331875452740775976452465584, 0.58331875452740775976452465584, 0.62783666133123237192773690870, 0.63894109696943917112414608145, 0.73894454603894110129504733716, 1.06237923557917822673925662931, 1.43211930527215041113664991390, 1.56814324479734969900044241340, 1.61870746603028050587192357780, 2.13816663465035840005448159418, 2.15971062799013188676711471893, 2.49946131448995770865052251661, 2.72871894271178897455531388988, 3.06990573541549945708675248060, 3.09292665285183073700157081443, 3.33970869044726039218822183672, 4.09174836166329894029723432041, 4.14716068245433914139797409119, 4.18771062113447505601598990517, 4.25567832939604624265446161751, 4.38930595338330187375075741352, 5.05241587647620470837437701755, 5.16121767966419257553177566298, 5.18568863678018082211440493726, 5.32428738747807592715270538774, 5.41383426369081855983460714443

Graph of the $Z$-function along the critical line