L(s) = 1 | − 3·2-s − 5·3-s + 2·4-s + 15·6-s − 8·7-s + 2·8-s + 15·9-s + 12·11-s − 10·12-s − 2·13-s + 24·14-s − 4·16-s − 45·18-s − 2·19-s + 40·21-s − 36·22-s − 8·23-s − 10·24-s + 6·26-s − 35·27-s − 16·28-s + 5·29-s + 2·31-s + 8·32-s − 60·33-s + 30·36-s − 16·37-s + ⋯ |
L(s) = 1 | − 2.12·2-s − 2.88·3-s + 4-s + 6.12·6-s − 3.02·7-s + 0.707·8-s + 5·9-s + 3.61·11-s − 2.88·12-s − 0.554·13-s + 6.41·14-s − 16-s − 10.6·18-s − 0.458·19-s + 8.72·21-s − 7.67·22-s − 1.66·23-s − 2.04·24-s + 1.17·26-s − 6.73·27-s − 3.02·28-s + 0.928·29-s + 0.359·31-s + 1.41·32-s − 10.4·33-s + 5·36-s − 2.63·37-s + ⋯ |
Λ(s)=(=((35⋅510⋅295)s/2ΓC(s)5L(s)−Λ(2−s)
Λ(s)=(=((35⋅510⋅295)s/2ΓC(s+1/2)5L(s)−Λ(1−s)
Degree: |
10 |
Conductor: |
35⋅510⋅295
|
Sign: |
−1
|
Analytic conductor: |
1.58009×106 |
Root analytic conductor: |
4.16742 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
5
|
Selberg data: |
(10, 35⋅510⋅295, ( :1/2,1/2,1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+T)5 |
| 5 | | 1 |
| 29 | C1 | (1−T)5 |
good | 2 | C2≀S5 | 1+3T+7T2+13T3+23T4+33T5+23pT6+13p2T7+7p3T8+3p4T9+p5T10 |
| 7 | C2≀S5 | 1+8T+53T2+230T3+857T4+2434T5+857pT6+230p2T7+53p3T8+8p4T9+p5T10 |
| 11 | C2≀S5 | 1−12T+103T2−600T3+2829T4−10300T5+2829pT6−600p2T7+103p3T8−12p4T9+p5T10 |
| 13 | C2≀S5 | 1+2T+59T2+94T3+1461T4+1772T5+1461pT6+94p2T7+59p3T8+2p4T9+p5T10 |
| 17 | C2≀S5 | 1+57T2−22T3+1665T4−450T5+1665pT6−22p2T7+57p3T8+p5T10 |
| 19 | C2≀S5 | 1+2T+27T2+132T3+338T4+172pT5+338pT6+132p2T7+27p3T8+2p4T9+p5T10 |
| 23 | C2≀S5 | 1+8T+109T2+676T3+4912T4+22672T5+4912pT6+676p2T7+109p3T8+8p4T9+p5T10 |
| 31 | C2≀S5 | 1−2T+53T2+16T3+2248T4−1468T5+2248pT6+16p2T7+53p3T8−2p4T9+p5T10 |
| 37 | C2≀S5 | 1+16T+223T2+2140T3+17712T4+115136T5+17712pT6+2140p2T7+223p3T8+16p4T9+p5T10 |
| 41 | C2≀S5 | 1+14T+169T2+1248T3+10126T4+61444T5+10126pT6+1248p2T7+169p3T8+14p4T9+p5T10 |
| 43 | C2≀S5 | 1+69T2−156T3+4508T4−6568T5+4508pT6−156p2T7+69p3T8+p5T10 |
| 47 | C2≀S5 | 1+2T+127T2+342T3+8633T4+20620T5+8633pT6+342p2T7+127p3T8+2p4T9+p5T10 |
| 53 | C2≀S5 | 1+26T+441T2+5164T3+49518T4+386260T5+49518pT6+5164p2T7+441p3T8+26p4T9+p5T10 |
| 59 | C2≀S5 | 1−4T+85T2−404T3+3924T4−17824T5+3924pT6−404p2T7+85p3T8−4p4T9+p5T10 |
| 61 | C2≀S5 | 1+12T+253T2+2164T3+27402T4+181576T5+27402pT6+2164p2T7+253p3T8+12p4T9+p5T10 |
| 67 | C2≀S5 | 1+12T+293T2+2310T3+33777T4+200494T5+33777pT6+2310p2T7+293p3T8+12p4T9+p5T10 |
| 71 | C2≀S5 | 1−30T+567T2−7636T3+84954T4−775260T5+84954pT6−7636p2T7+567p3T8−30p4T9+p5T10 |
| 73 | C2≀S5 | 1−12T+227T2−2580T3+25224T4−252152T5+25224pT6−2580p2T7+227p3T8−12p4T9+p5T10 |
| 79 | C2≀S5 | 1+18T+327T2+44pT3+44194T4+376580T5+44194pT6+44p3T7+327p3T8+18p4T9+p5T10 |
| 83 | C2≀S5 | 1+2T+309T2+112T3+41844T4−8972T5+41844pT6+112p2T7+309p3T8+2p4T9+p5T10 |
| 89 | C2≀S5 | 1+22T+421T2+5760T3+72333T4+717438T5+72333pT6+5760p2T7+421p3T8+22p4T9+p5T10 |
| 97 | C2≀S5 | 1+20T+629T2+8228T3+136670T4+1220200T5+136670pT6+8228p2T7+629p3T8+20p4T9+p5T10 |
show more | | |
show less | | |
L(s)=p∏ j=1∏10(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.01355311778597859270131890359, −5.76210118054371517262020054989, −5.67977854501064474690570106947, −5.40533470545678818905974101564, −5.36036177362494260385261017157, −4.73401512552929285281975518636, −4.71367160765961938200506968206, −4.70530082437166756509549457811, −4.67338120914734568974097030334, −4.53246181097811265902315628208, −3.96712978625600074749006692804, −3.86896209949477103890157631348, −3.64577480205658030495224175197, −3.62075680366259142733934451502, −3.56343859013510770513136402419, −3.24936797193772198072486306143, −3.00766383161831255895532087816, −2.77032007654021612627617461231, −2.30666109723907007123194318256, −2.14254364341070777381892870074, −1.81986020046948973544620214740, −1.38585558305090380304521523032, −1.28165043048159175423304649322, −1.18436371530917250460372208290, −1.11834923788114409681819649097, 0, 0, 0, 0, 0,
1.11834923788114409681819649097, 1.18436371530917250460372208290, 1.28165043048159175423304649322, 1.38585558305090380304521523032, 1.81986020046948973544620214740, 2.14254364341070777381892870074, 2.30666109723907007123194318256, 2.77032007654021612627617461231, 3.00766383161831255895532087816, 3.24936797193772198072486306143, 3.56343859013510770513136402419, 3.62075680366259142733934451502, 3.64577480205658030495224175197, 3.86896209949477103890157631348, 3.96712978625600074749006692804, 4.53246181097811265902315628208, 4.67338120914734568974097030334, 4.70530082437166756509549457811, 4.71367160765961938200506968206, 4.73401512552929285281975518636, 5.36036177362494260385261017157, 5.40533470545678818905974101564, 5.67977854501064474690570106947, 5.76210118054371517262020054989, 6.01355311778597859270131890359