Dirichlet series
L(s) = 1 | + 15·2-s + 161·3-s − 987·4-s + 1.80e3·5-s + 2.41e3·6-s + 1.00e4·7-s − 1.07e4·8-s − 5.71e3·9-s + 2.70e4·10-s + 1.21e5·11-s − 1.58e5·12-s + 1.42e5·13-s + 1.51e5·14-s + 2.90e5·15-s + 4.33e5·16-s − 4.95e5·17-s − 8.57e4·18-s − 8.40e5·19-s − 1.77e6·20-s + 1.62e6·21-s + 1.82e6·22-s − 5.92e5·23-s − 1.73e6·24-s − 2.42e6·25-s + 2.14e6·26-s − 1.08e6·27-s − 9.96e6·28-s + ⋯ |
L(s) = 1 | + 0.662·2-s + 1.14·3-s − 1.92·4-s + 1.29·5-s + 0.760·6-s + 1.58·7-s − 0.929·8-s − 0.290·9-s + 0.855·10-s + 2.50·11-s − 2.21·12-s + 1.38·13-s + 1.05·14-s + 1.48·15-s + 1.65·16-s − 1.43·17-s − 0.192·18-s − 1.48·19-s − 2.48·20-s + 1.82·21-s + 1.66·22-s − 0.441·23-s − 1.06·24-s − 1.24·25-s + 0.919·26-s − 0.392·27-s − 3.06·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(10\) |
Conductor: | \(371293\) = \(13^{5}\) |
Sign: | $1$ |
Analytic conductor: | \(13455.6\) |
Root analytic conductor: | \(2.58755\) |
Motivic weight: | \(9\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((10,\ 371293,\ (\ :9/2, 9/2, 9/2, 9/2, 9/2),\ 1)\) |
Particular Values
\(L(5)\) | \(\approx\) | \(9.322764616\) |
\(L(\frac12)\) | \(\approx\) | \(9.322764616\) |
\(L(\frac{11}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 13 | $C_1$ | \( ( 1 - p^{4} T )^{5} \) |
good | 2 | $C_2 \wr S_5$ | \( 1 - 15 T + 303 p^{2} T^{2} - 5553 p^{2} T^{3} + 29201 p^{5} T^{4} - 252033 p^{6} T^{5} + 29201 p^{14} T^{6} - 5553 p^{20} T^{7} + 303 p^{29} T^{8} - 15 p^{36} T^{9} + p^{45} T^{10} \) |
3 | $C_2 \wr S_5$ | \( 1 - 161 T + 10546 p T^{2} - 60851 p^{4} T^{3} + 37844987 p^{3} T^{4} - 1621483792 p^{4} T^{5} + 37844987 p^{12} T^{6} - 60851 p^{22} T^{7} + 10546 p^{28} T^{8} - 161 p^{36} T^{9} + p^{45} T^{10} \) | |
5 | $C_2 \wr S_5$ | \( 1 - 1803 T + 5673036 T^{2} - 2122118037 p T^{3} + 154127491547 p^{3} T^{4} - 217433194071432 p^{3} T^{5} + 154127491547 p^{12} T^{6} - 2122118037 p^{19} T^{7} + 5673036 p^{27} T^{8} - 1803 p^{36} T^{9} + p^{45} T^{10} \) | |
7 | $C_2 \wr S_5$ | \( 1 - 10099 T + 139254174 T^{2} - 122453891247 p T^{3} + 166521050648013 p^{2} T^{4} - 122374113130618344 p^{3} T^{5} + 166521050648013 p^{11} T^{6} - 122453891247 p^{19} T^{7} + 139254174 p^{27} T^{8} - 10099 p^{36} T^{9} + p^{45} T^{10} \) | |
11 | $C_2 \wr S_5$ | \( 1 - 121746 T + 14269408587 T^{2} - 1047597531024144 T^{3} + 70977489220411684558 T^{4} - \)\(36\!\cdots\!52\)\( T^{5} + 70977489220411684558 p^{9} T^{6} - 1047597531024144 p^{18} T^{7} + 14269408587 p^{27} T^{8} - 121746 p^{36} T^{9} + p^{45} T^{10} \) | |
17 | $C_2 \wr S_5$ | \( 1 + 29157 p T + 303748065600 T^{2} + 136238774144131095 T^{3} + \)\(32\!\cdots\!83\)\( p T^{4} + \)\(62\!\cdots\!64\)\( p^{2} T^{5} + \)\(32\!\cdots\!83\)\( p^{10} T^{6} + 136238774144131095 p^{18} T^{7} + 303748065600 p^{27} T^{8} + 29157 p^{37} T^{9} + p^{45} T^{10} \) | |
19 | $C_2 \wr S_5$ | \( 1 + 840738 T + 1352453971283 T^{2} + 953145467206471696 T^{3} + \)\(83\!\cdots\!34\)\( T^{4} + \)\(43\!\cdots\!52\)\( T^{5} + \)\(83\!\cdots\!34\)\( p^{9} T^{6} + 953145467206471696 p^{18} T^{7} + 1352453971283 p^{27} T^{8} + 840738 p^{36} T^{9} + p^{45} T^{10} \) | |
23 | $C_2 \wr S_5$ | \( 1 + 592152 T + 5512736304883 T^{2} - 937525593298362720 T^{3} + \)\(10\!\cdots\!94\)\( T^{4} - \)\(33\!\cdots\!76\)\( p T^{5} + \)\(10\!\cdots\!94\)\( p^{9} T^{6} - 937525593298362720 p^{18} T^{7} + 5512736304883 p^{27} T^{8} + 592152 p^{36} T^{9} + p^{45} T^{10} \) | |
29 | $C_2 \wr S_5$ | \( 1 - 10678182 T + 88796663366937 T^{2} - \)\(54\!\cdots\!56\)\( T^{3} + \)\(28\!\cdots\!78\)\( T^{4} - \)\(11\!\cdots\!44\)\( T^{5} + \)\(28\!\cdots\!78\)\( p^{9} T^{6} - \)\(54\!\cdots\!56\)\( p^{18} T^{7} + 88796663366937 p^{27} T^{8} - 10678182 p^{36} T^{9} + p^{45} T^{10} \) | |
31 | $C_2 \wr S_5$ | \( 1 - 12885296 T + 164536395807867 T^{2} - \)\(12\!\cdots\!24\)\( T^{3} + \)\(92\!\cdots\!78\)\( T^{4} - \)\(48\!\cdots\!72\)\( T^{5} + \)\(92\!\cdots\!78\)\( p^{9} T^{6} - \)\(12\!\cdots\!24\)\( p^{18} T^{7} + 164536395807867 p^{27} T^{8} - 12885296 p^{36} T^{9} + p^{45} T^{10} \) | |
37 | $C_2 \wr S_5$ | \( 1 - 7171823 T + 354892872282468 T^{2} - \)\(10\!\cdots\!13\)\( T^{3} + \)\(60\!\cdots\!79\)\( T^{4} - \)\(91\!\cdots\!16\)\( T^{5} + \)\(60\!\cdots\!79\)\( p^{9} T^{6} - \)\(10\!\cdots\!13\)\( p^{18} T^{7} + 354892872282468 p^{27} T^{8} - 7171823 p^{36} T^{9} + p^{45} T^{10} \) | |
41 | $C_2 \wr S_5$ | \( 1 - 9294012 T + 571994210722321 T^{2} - \)\(89\!\cdots\!60\)\( T^{3} + \)\(16\!\cdots\!02\)\( T^{4} - \)\(34\!\cdots\!04\)\( T^{5} + \)\(16\!\cdots\!02\)\( p^{9} T^{6} - \)\(89\!\cdots\!60\)\( p^{18} T^{7} + 571994210722321 p^{27} T^{8} - 9294012 p^{36} T^{9} + p^{45} T^{10} \) | |
43 | $C_2 \wr S_5$ | \( 1 - 12831975 T + 322694905923638 T^{2} - \)\(26\!\cdots\!89\)\( T^{3} + \)\(62\!\cdots\!77\)\( T^{4} - \)\(43\!\cdots\!96\)\( T^{5} + \)\(62\!\cdots\!77\)\( p^{9} T^{6} - \)\(26\!\cdots\!89\)\( p^{18} T^{7} + 322694905923638 p^{27} T^{8} - 12831975 p^{36} T^{9} + p^{45} T^{10} \) | |
47 | $C_2 \wr S_5$ | \( 1 - 43354215 T + 2527109677831630 T^{2} - \)\(75\!\cdots\!93\)\( T^{3} + \)\(33\!\cdots\!41\)\( T^{4} - \)\(71\!\cdots\!56\)\( T^{5} + \)\(33\!\cdots\!41\)\( p^{9} T^{6} - \)\(75\!\cdots\!93\)\( p^{18} T^{7} + 2527109677831630 p^{27} T^{8} - 43354215 p^{36} T^{9} + p^{45} T^{10} \) | |
53 | $C_2 \wr S_5$ | \( 1 - 93231780 T + 14353270896409645 T^{2} - \)\(11\!\cdots\!96\)\( T^{3} + \)\(88\!\cdots\!06\)\( T^{4} - \)\(52\!\cdots\!08\)\( T^{5} + \)\(88\!\cdots\!06\)\( p^{9} T^{6} - \)\(11\!\cdots\!96\)\( p^{18} T^{7} + 14353270896409645 p^{27} T^{8} - 93231780 p^{36} T^{9} + p^{45} T^{10} \) | |
59 | $C_2 \wr S_5$ | \( 1 - 246496182 T + 33223507046890507 T^{2} - \)\(26\!\cdots\!60\)\( T^{3} + \)\(17\!\cdots\!50\)\( T^{4} - \)\(12\!\cdots\!36\)\( T^{5} + \)\(17\!\cdots\!50\)\( p^{9} T^{6} - \)\(26\!\cdots\!60\)\( p^{18} T^{7} + 33223507046890507 p^{27} T^{8} - 246496182 p^{36} T^{9} + p^{45} T^{10} \) | |
61 | $C_2 \wr S_5$ | \( 1 + 132232612 T + 51932556467342037 T^{2} + \)\(51\!\cdots\!12\)\( T^{3} + \)\(11\!\cdots\!74\)\( T^{4} + \)\(84\!\cdots\!48\)\( T^{5} + \)\(11\!\cdots\!74\)\( p^{9} T^{6} + \)\(51\!\cdots\!12\)\( p^{18} T^{7} + 51932556467342037 p^{27} T^{8} + 132232612 p^{36} T^{9} + p^{45} T^{10} \) | |
67 | $C_2 \wr S_5$ | \( 1 + 369388534 T + 167732159711342355 T^{2} + \)\(38\!\cdots\!64\)\( T^{3} + \)\(97\!\cdots\!58\)\( T^{4} + \)\(15\!\cdots\!40\)\( T^{5} + \)\(97\!\cdots\!58\)\( p^{9} T^{6} + \)\(38\!\cdots\!64\)\( p^{18} T^{7} + 167732159711342355 p^{27} T^{8} + 369388534 p^{36} T^{9} + p^{45} T^{10} \) | |
71 | $C_2 \wr S_5$ | \( 1 - 212150457 T + 126078700918544326 T^{2} - \)\(34\!\cdots\!35\)\( T^{3} + \)\(83\!\cdots\!89\)\( T^{4} - \)\(22\!\cdots\!08\)\( T^{5} + \)\(83\!\cdots\!89\)\( p^{9} T^{6} - \)\(34\!\cdots\!35\)\( p^{18} T^{7} + 126078700918544326 p^{27} T^{8} - 212150457 p^{36} T^{9} + p^{45} T^{10} \) | |
73 | $C_2 \wr S_5$ | \( 1 + 252729806 T + 113432726759207253 T^{2} + \)\(15\!\cdots\!40\)\( T^{3} + \)\(10\!\cdots\!58\)\( T^{4} + \)\(17\!\cdots\!28\)\( T^{5} + \)\(10\!\cdots\!58\)\( p^{9} T^{6} + \)\(15\!\cdots\!40\)\( p^{18} T^{7} + 113432726759207253 p^{27} T^{8} + 252729806 p^{36} T^{9} + p^{45} T^{10} \) | |
79 | $C_2 \wr S_5$ | \( 1 + 1247271728 T + 1135234985129373579 T^{2} + \)\(68\!\cdots\!96\)\( T^{3} + \)\(33\!\cdots\!94\)\( T^{4} + \)\(12\!\cdots\!92\)\( T^{5} + \)\(33\!\cdots\!94\)\( p^{9} T^{6} + \)\(68\!\cdots\!96\)\( p^{18} T^{7} + 1135234985129373579 p^{27} T^{8} + 1247271728 p^{36} T^{9} + p^{45} T^{10} \) | |
83 | $C_2 \wr S_5$ | \( 1 - 1696894296 T + 1900005505469354847 T^{2} - \)\(14\!\cdots\!20\)\( T^{3} + \)\(90\!\cdots\!82\)\( T^{4} - \)\(43\!\cdots\!16\)\( T^{5} + \)\(90\!\cdots\!82\)\( p^{9} T^{6} - \)\(14\!\cdots\!20\)\( p^{18} T^{7} + 1900005505469354847 p^{27} T^{8} - 1696894296 p^{36} T^{9} + p^{45} T^{10} \) | |
89 | $C_2 \wr S_5$ | \( 1 + 753854382 T + 1391064645589335141 T^{2} + \)\(88\!\cdots\!08\)\( T^{3} + \)\(90\!\cdots\!06\)\( T^{4} + \)\(43\!\cdots\!00\)\( T^{5} + \)\(90\!\cdots\!06\)\( p^{9} T^{6} + \)\(88\!\cdots\!08\)\( p^{18} T^{7} + 1391064645589335141 p^{27} T^{8} + 753854382 p^{36} T^{9} + p^{45} T^{10} \) | |
97 | $C_2 \wr S_5$ | \( 1 - 3824606 T + 1359157730156522205 T^{2} + \)\(14\!\cdots\!24\)\( T^{3} + \)\(16\!\cdots\!14\)\( T^{4} + \)\(77\!\cdots\!52\)\( T^{5} + \)\(16\!\cdots\!14\)\( p^{9} T^{6} + \)\(14\!\cdots\!24\)\( p^{18} T^{7} + 1359157730156522205 p^{27} T^{8} - 3824606 p^{36} T^{9} + p^{45} T^{10} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−10.96755344068652021440322682103, −10.47146690063545857380741999627, −10.30120333071670590147466338689, −9.689771883234677143779068138526, −9.640976171901390060997929183005, −8.955033076950461752009246256058, −8.807407888513218374358739284116, −8.602688657565501795948227062440, −8.521660255554272723527879648770, −8.172037666415081195687127974513, −7.63330555332640379495250506575, −6.77715371842856182111550555252, −6.43043112468585301663273465919, −5.99103095338263178456271172566, −5.98066825546955764352594321115, −4.94515656802875929033096965756, −4.61546529671658897304204988220, −4.40347901934242206136518659056, −3.92162465517986363555414252976, −3.89953980598280880035062853658, −2.53158953959929218221181292797, −2.48308230655511526929776622450, −1.41442314638227447995018807528, −1.36658821899086888741855790842, −0.55580831322115090404196232425, 0.55580831322115090404196232425, 1.36658821899086888741855790842, 1.41442314638227447995018807528, 2.48308230655511526929776622450, 2.53158953959929218221181292797, 3.89953980598280880035062853658, 3.92162465517986363555414252976, 4.40347901934242206136518659056, 4.61546529671658897304204988220, 4.94515656802875929033096965756, 5.98066825546955764352594321115, 5.99103095338263178456271172566, 6.43043112468585301663273465919, 6.77715371842856182111550555252, 7.63330555332640379495250506575, 8.172037666415081195687127974513, 8.521660255554272723527879648770, 8.602688657565501795948227062440, 8.807407888513218374358739284116, 8.955033076950461752009246256058, 9.640976171901390060997929183005, 9.689771883234677143779068138526, 10.30120333071670590147466338689, 10.47146690063545857380741999627, 10.96755344068652021440322682103